你父母给你的最重要的礼物 就是2组包含30亿个碱基的DNA, 它们构成了你的基因组。 但就像任何包含太多零件的东西一样, 这个礼物非常脆弱。 太阳光、吸烟、不健康的饮食, 甚至是细胞自身出现的错误, 都能改变你的基因组。 最常见的DNA改变 就是一个字母,也叫一个碱基, 比如C(胞嘧啶), 换成了别的碱基,如T(胸腺嘧啶)、 G(鸟嘌呤)或者A(腺嘌呤)。 每一天,你身体里的细胞 会累计发生数亿次 单碱基的改变, 这也被称作“点突变”。 大部分点突变是无害的。 但时不时, 点突变会干扰细胞的某项重要功能, 或者引起细胞出现异常行为。 如果这种变异是从父母遗传而来的, 或者发生于你生命早期, 那么结果很可能是 你的大部分甚至全部细胞 都带有这种有害变异。 你可能就会像其他成千上万人一样 患上基因疾病, 像镰刀型红血球病,或者早衰症, 或者肌肉萎缩症, 或者家族黑蒙性痴呆症。 由点基因突变引起的 这些不幸的遗传疾病 让我们尤其沮丧, 因为我们往往已经知道 哪个具体字母(碱基)发生了突变, 从而导致了疾病。 因此理论上,我们可以治愈它。 数百万人被镰刀型红血球病折磨, 因为他们的血红蛋白基因中 都含有从A到T的点突变。 而患有早衰症的孩子 只不过生来就在基因组中的 某个位置有一个T, 而正常的基因应该是C, 令人悲伤的是,这些聪明美好的孩子 衰老得非常快,通常活不过14岁。 纵观整个医药史, 我们还没有找到有效的方法 可以在生命系统中纠正点突变, 将引起疾病的T改回正常的C。 但现在我们有办法了。 因为我的实验室 最近成功发明了一种技术, 叫做“碱基编辑”。 关于我们如何发明“碱基编辑”的故事 可以追溯到30亿年前。 我们通常认为细菌是感染源, 但其实细菌本身也容易被感染, 特别是被病毒。 因此大约30亿年前, 细菌进化出一种防御机制, 来抵抗病毒感染。 这种防御机制如今被称为CRISPR。 CRISPR里最强的武器 是这种紫色的蛋白质, 它就像分子剪刀一样, 可以剪断DNA链, 将双螺旋结构剪成2条单螺旋链。 如果CRISPR分不清 细菌和病毒的DNA, 这就不能算是一个好的防御系统。 但CRISPR最神奇之处在于 剪刀可以被编辑, 专门寻找、锁定和剪断 特定的DNA片段。 所以当细菌首次遇到某个病毒时, 它会存储一小段病毒的DNA 以此来引导CRISPR的剪刀, 如果将来发生感染, 就剪断病毒的DNA链。 剪断病毒的DNA 会扰乱该病毒基因的表达功能, 从而中断病毒的生命。 许多优秀的研究者,比如 埃马纽埃尔·卡彭蒂耶、乔治·丘奇, 詹妮佛·杜德纳和张锋, 在6年前展示了 CRISPR的剪刀可以被编辑, 用来剪断我们选择的DNA片段, 人类的基因片段, 而不是细菌选的病毒的DNA片段。 效果是相似的。 通过剪断基因中的DNA片段 同样会影响被剪基因的功能, 方法就是在被剪的位置上增加或删除 随机的DNA碱基组合。 在某些情况下,扰乱基因非常有用。 但对于大部分引起遗传疾病的 点突变而言, 仅仅剪断已经发生变异的基因, 对病人而言并没有意义, 因为这些变异基因的功能需要重置, 而不是进一步打乱。 因此,把那些引起镰刀型贫血的, 已经变异的血红蛋白基因剪断, 并不能恢复病人的造血功能。 有时候我们可以加入 一些新的DNA片段到细胞中, 替代被剪断区域周围的DNA链, 但可惜的是这一过程 对大部分细胞不起作用, 被影响的基因仍占主导地位。 像许多科学家一样, 我梦想着未来有一天, 我们可以治疗甚至治愈 人类遗传疾病。 但我们缺乏修复点突变的方法, 而点突变是大部分 人类基因疾病的主因, 是我们需要解决的主要问题。 我是一名化学家,我跟我的学生们 一起研究将化学反应 应用于单个DNA碱基上的方法, 从而真正修复,而不仅仅是 终止引起基因疾病的变异。 我们的成果就是分子机器, 叫做“碱基编辑器”。 碱基编辑器使用的是 类似CRISPR剪刀的可编程搜索机制, 但与剪断DNA不同的是, 它们直接将一个碱基变成另一个, 而不会破坏基因的其他部分。 如果将CRISPR蛋白质 比作分子剪刀的话, 碱基编辑器就像铅笔, 它能直接改写DNA碱基, 通过重新排列DNA碱基上的原子, 而不是将它变成一个不同的碱基。 碱基编辑器在大自然中并不存在。 实际上,我们制造的 第一个碱基编辑器,如图所示, 是由3种独立的蛋白质组成, 它们甚至都不是来自同一个生物体。 我们首先抑制CRISPR剪刀 剪断DNA的功能, 并通过编程的方法,保持其搜索和锁定 目标DNA片段的能力。 在功能被抑制的CRISPR剪刀上, 图中蓝色的部分, 我们加上了第2种蛋白质, 在这里用红色标出, 它会与DNA碱基C发生化学反应, 将其转换成与T行为相似的碱基。 第3步,我们将图片中 用紫色标出的蛋白质 加在前2种蛋白质上, 来保护被编辑过的碱基不被细胞移除。 最终结果就是制造出一个 由3部分组成的蛋白质, 这也是我们在史上首次 将基因组特定位置的 碱基C转换为T。 但做到这一步, 我们的工作也仅仅完成了一半。 因为为了保持细胞的稳定, DNA双螺旋结构中的两条链 必须形成碱基对。 因为C只能跟G配对, T只能跟A配对, 如果只是将一链上的碱基C变成T, 会造成DNA双螺旋的不匹配, 要解决这个问题, 细胞需要决定替换哪一条链。 我们认识到可以改进 这个由3部分组成的蛋白质, 将未编辑的那条链标记为 要被切割掉。 这个小缺口诱骗细胞 用A取代未编辑的G, 因为它重新生成了完整的单链, 这样就完成了C-G碱基对 到稳定的T-A碱基对的转变。 在实验室前博士后Alexis Komor 领导的几年努力工作之后, 我们成功地开发了第一代碱基编辑器, 将指定位置的C都转变为T, G都转变为A。 在3.5万多个已知的 与点突变有关的疾病中, 第一代碱基编辑器可以逆转的两种突变 总共占致病点突变的 14%或5000种左右。 但是,纠正大部分致病点突变 需要开发第二代碱基编辑器, 一个可以将A都转变为G 或T都转变为C的工具。 在实验室前博士后 Nicole Gaudelli的领导下, 我们着手开发了这个第二代碱基编辑器, 从理论上讲,这样可以 纠正近一半的致病点基因突变, 包括导致早衰症的突变。 我们意识到我们可以再次借助, CRISPR剪刀的靶向机制, 将新的碱基编辑器 带到基因组的正确位置。 但我们很快遇到了 一个棘手的难题; 具体来说,在DNA中没有 已知的蛋白质 可以将A转化成G 或者T转化成C。 面对如此严重的困难险阻, 很多学生可能会寻找其他方案, 而不是咨询其他研究顾问。 (笑声) 但Nicole同意继续实施一项 当时看来雄心勃勃的计划。 鉴于缺乏一种自然产生的蛋白质 来进行必要的化学反应, 我们决定在实验室里 进化我们自己的蛋白质 来把A转化成一个像G一样的碱基, 从一种对RNA进行相关 化学反应的蛋白质开始。 我们建立了达尔文适者生存选择体系, 探索了数千万种蛋白质变异, 只允许那些能够进行 必要化学反应的罕见变异存活下来。 我们最终得到了这里显示的蛋白质, 第一个能把DNA中的A 转化成类似G的碱基。 当我们把这个蛋白质连接到 受到抑制的CRISPR剪刀上, 这里用蓝色标示, 第二代碱基编辑器就诞生了, 可以把A转变为G, 然后使用第一代碱基编辑器中 同样的链切割策略 诱骗细胞用C取代未编辑的T, 当它重新生成单链后, 就完成了A-T碱基对 到G-C碱基对的转变。 (鼓掌) 谢谢。 (鼓掌) 作为一个美国学术科学家, 我还不是很习惯被掌声打断。 (笑声) 我们开发的这两代碱基编辑器 分别诞生于3年前和1年半前而已。 但在这短短的时间里, 碱基编辑器已经被 生物医学团队广泛使用。 碱基编辑器应全球超过 1000位研究者的请求 已经被发送到全球各地多达6千次。 目前发表的相关科研论文多达百篇, 包括了从细菌到植物, 从老鼠到灵长类动物的生物体中 使用的碱基编辑器。 碱基编辑器还太新, 尚未进入人体临床试验, 科学家们已经在为之努力了, 他们成功使用动物的碱基编辑器 来纠正导致人类遗传疾病的点突变。 比如, 由Luke Koblan和Jon Levy领导 的一个科学家合作小组, 外加我们实验室的两个学生, 最近使用了一种病毒 将第二代碱基编辑器 植入患有早衰症的老鼠体内, 把致病的T变回C, 并在DNA、RNA和蛋白质层面上 逆转了其导致的后果。 碱基编辑器也被用于动物身上 来逆转酪氨酸血症, 地中海贫血,肌营养不良, 苯丙酮尿症,某种先天性耳聋 和某种类型的心血管疾病—— 在这些案例中,通过直接纠正 导致或者参与致病的点突变 就可以逆转病症。 在植物中,碱基编辑器已被用于 引入单个DNA字符的改变 以带来更好的收成。 生物学家也使用了碱基编辑器 来探索单个碱基 在与癌症等疾病相关的基因中的作用。 我联合创办的两家公司, Beam Therapeutics和Pairwise Plants, 正使用碱基编辑器治疗人类基因疾病 和改善农业。 所有这些对碱基编辑的应用 都发生在不到三年的时间里: 在科学的历史尺度上, 这只是一眨眼的功夫。 在碱基编辑器 提升基因疾病病人的生命质量前, 我们仍有很多额外的工作要做。 尽管许多这些疾病被认为是 只需要纠正器官中 很小一部分细胞 的潜在突变就能治疗的, 将分子机器(如碱基编辑器) 送入人体细胞 仍然富有挑战。 利用自然界的病毒来传递碱基编辑器, 而不是让你感冒的分子来做这个, 是几种已经成功实践的 有前景的传递策略之一。 继续研究开发新的分子机器, 找到其他的方法 将一个碱基对转变成 另一个碱基对, 并尽量减少细胞非目标位置上 不必要的编辑 是非常重要的。 与其他科学家、医生、 伦理学家和政府合作, 最大限度地提高 碱基编辑用于深思熟虑、 安全和合乎道德的可能性, 仍然是一项重要义务。 尽管有这些挑战, 如果你在五年前告诉我 全球的研究人员 将使用实验室发明的分子机器 来直接有效地把单个碱基对 转变成另一个碱基对, 放在特定的基因组位置, 而且不会产生其他结果, 我会反问你, “你是不是在读哪本科幻小说?” 感谢我们孜孜不倦的学生, 他们有惊人的创造力来设计工具, 使得我们可以改造自身, 并勇敢地去进化 原本无法进化出的特征, 碱基编辑已经开始将 科幻小说般的渴望 转变成令人兴奋的现实, 我们给孩子们最重要的礼物 可能不再只是30亿DNA个碱基, 同时还有保护和修复它们的方法。 谢谢。 (鼓掌) 谢谢。