[Script Info] Title: [Events] Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text Dialogue: 0,0:00:00.00,0:00:00.58,Default,,0000,0000,0000,, Dialogue: 0,0:00:00.58,0:00:02.26,Default,,0000,0000,0000,,Let's take the\Nindefinite integral Dialogue: 0,0:00:02.26,0:00:07.99,Default,,0000,0000,0000,,of the square root\Nof 7x plus 9 dx. Dialogue: 0,0:00:07.99,0:00:10.29,Default,,0000,0000,0000,,So my first question\Nto you is, is this Dialogue: 0,0:00:10.29,0:00:14.06,Default,,0000,0000,0000,,going to be a good case\Nfor u-substitution? Dialogue: 0,0:00:14.06,0:00:16.83,Default,,0000,0000,0000,,Well, when you look here,\Nmaybe the natural thing Dialogue: 0,0:00:16.83,0:00:20.88,Default,,0000,0000,0000,,to set to be equal\Nto u is 7x plus 9. Dialogue: 0,0:00:20.88,0:00:24.20,Default,,0000,0000,0000,,But do I see its derivative\Nanywhere over here? Dialogue: 0,0:00:24.20,0:00:24.87,Default,,0000,0000,0000,,Well, let's see. Dialogue: 0,0:00:24.87,0:00:30.12,Default,,0000,0000,0000,,If we set u to be\Nequal to 7x plus 9, Dialogue: 0,0:00:30.12,0:00:33.41,Default,,0000,0000,0000,,what is the derivative of u\Nwith respect to x going to be? Dialogue: 0,0:00:33.41,0:00:35.31,Default,,0000,0000,0000,,Derivative of u\Nwith respect to x Dialogue: 0,0:00:35.31,0:00:37.08,Default,,0000,0000,0000,,is just going to be equal to 7. Dialogue: 0,0:00:37.08,0:00:38.47,Default,,0000,0000,0000,,Derivative of 7x is 7. Dialogue: 0,0:00:38.47,0:00:40.65,Default,,0000,0000,0000,,Derivative of 9 is 0. Dialogue: 0,0:00:40.65,0:00:44.19,Default,,0000,0000,0000,,So do we see a 7 lying\Naround anywhere over here? Dialogue: 0,0:00:44.19,0:00:45.58,Default,,0000,0000,0000,,Well, we don't. Dialogue: 0,0:00:45.58,0:00:49.34,Default,,0000,0000,0000,,But what could we do in order\Nto have a 7 lying around, Dialogue: 0,0:00:49.34,0:00:53.28,Default,,0000,0000,0000,,but not change the\Nvalue of the integral? Dialogue: 0,0:00:53.28,0:00:55.96,Default,,0000,0000,0000,,Well, the neat thing-- and we've\Nseen this multiple times-- is Dialogue: 0,0:00:55.96,0:00:57.33,Default,,0000,0000,0000,,when you're\Nevaluating integrals, Dialogue: 0,0:00:57.33,0:01:01.24,Default,,0000,0000,0000,,scalars can go in and outside\Nof the integral very easily. Dialogue: 0,0:01:01.24,0:01:05.92,Default,,0000,0000,0000,,Just to remind ourselves, if I\Nhave the integral of let's say Dialogue: 0,0:01:05.92,0:01:11.69,Default,,0000,0000,0000,,some scalar a times\Nf of x dx, this Dialogue: 0,0:01:11.69,0:01:17.42,Default,,0000,0000,0000,,is the same thing as a times\Nthe integral of f of x dx. Dialogue: 0,0:01:17.42,0:01:19.34,Default,,0000,0000,0000,,The integral of the\Nscalar times a function Dialogue: 0,0:01:19.34,0:01:22.65,Default,,0000,0000,0000,,is equal to the scalar times\Nthe integral of the functions. Dialogue: 0,0:01:22.65,0:01:25.28,Default,,0000,0000,0000,,So let me put this\Naside right over here. Dialogue: 0,0:01:25.28,0:01:28.63,Default,,0000,0000,0000,,So with that in mind, can\Nwe multiply and divide Dialogue: 0,0:01:28.63,0:01:31.71,Default,,0000,0000,0000,,by something that will\Nhave a 7 showing up? Dialogue: 0,0:01:31.71,0:01:34.33,Default,,0000,0000,0000,,Well, we can multiply\Nand divide by 7. Dialogue: 0,0:01:34.33,0:01:35.83,Default,,0000,0000,0000,,So imagine doing this. Dialogue: 0,0:01:35.83,0:01:38.58,Default,,0000,0000,0000,,Let's rewrite our\Noriginal integral. Dialogue: 0,0:01:38.58,0:01:40.96,Default,,0000,0000,0000,,So let me draw a\Nlittle arrow here just Dialogue: 0,0:01:40.96,0:01:42.42,Default,,0000,0000,0000,,to go around that aside. Dialogue: 0,0:01:42.42,0:01:44.10,Default,,0000,0000,0000,,We could rewrite our\Noriginal integral Dialogue: 0,0:01:44.10,0:01:51.34,Default,,0000,0000,0000,,as being 9 to the integral\Nof times 1/7 times 7 times Dialogue: 0,0:01:51.34,0:01:57.98,Default,,0000,0000,0000,,the square root of 7x plus 9 dx. Dialogue: 0,0:01:57.98,0:02:00.06,Default,,0000,0000,0000,,And if we want to, we\Ncould take the 1/7 outside Dialogue: 0,0:02:00.06,0:02:00.73,Default,,0000,0000,0000,,of the integral. Dialogue: 0,0:02:00.73,0:02:02.27,Default,,0000,0000,0000,,We don't have to,\Nbut we can rewrite Dialogue: 0,0:02:02.27,0:02:06.62,Default,,0000,0000,0000,,this as 1/7 times\Nthe integral of 7, Dialogue: 0,0:02:06.62,0:02:12.13,Default,,0000,0000,0000,,times the square\Nroot of 7x plus 9 dx. Dialogue: 0,0:02:12.13,0:02:14.84,Default,,0000,0000,0000,,So now if we set u\Nequal to 7x plus 9, Dialogue: 0,0:02:14.84,0:02:16.86,Default,,0000,0000,0000,,do we have its\Nderivative laying around? Dialogue: 0,0:02:16.86,0:02:17.41,Default,,0000,0000,0000,,Well, sure. Dialogue: 0,0:02:17.41,0:02:20.35,Default,,0000,0000,0000,,The 7 is right over here. Dialogue: 0,0:02:20.35,0:02:23.00,Default,,0000,0000,0000,,We know that du-- if we want to\Nwrite it in differential form-- Dialogue: 0,0:02:23.00,0:02:27.06,Default,,0000,0000,0000,,du is equal to 7 times dx. Dialogue: 0,0:02:27.06,0:02:31.46,Default,,0000,0000,0000,,So du is equal to 7 times dx. Dialogue: 0,0:02:31.46,0:02:35.32,Default,,0000,0000,0000,,That part right over\Nthere is equal to du. Dialogue: 0,0:02:35.32,0:02:37.32,Default,,0000,0000,0000,,And if we want to care\Nabout u, well, that's Dialogue: 0,0:02:37.32,0:02:40.05,Default,,0000,0000,0000,,just going to be the 7x plus 9. Dialogue: 0,0:02:40.05,0:02:41.52,Default,,0000,0000,0000,,That is are u. Dialogue: 0,0:02:41.52,0:02:45.27,Default,,0000,0000,0000,,So let's rewrite this indefinite\Nintegral in terms of u. Dialogue: 0,0:02:45.27,0:02:53.12,Default,,0000,0000,0000,,It's going to be equal to\N1/7 times the integral of-- Dialogue: 0,0:02:53.12,0:02:55.16,Default,,0000,0000,0000,,and I'll just take the 7\Nand put it in the back. Dialogue: 0,0:02:55.16,0:02:57.71,Default,,0000,0000,0000,,So we could just\Nwrite the square root Dialogue: 0,0:02:57.71,0:03:06.45,Default,,0000,0000,0000,,of u du, 7 times dx is du. Dialogue: 0,0:03:06.45,0:03:10.11,Default,,0000,0000,0000,,And we can rewrite this if we\Nwant as u to the 1/2 power. Dialogue: 0,0:03:10.11,0:03:12.32,Default,,0000,0000,0000,,It makes it a little bit\Neasier for us to kind of do Dialogue: 0,0:03:12.32,0:03:14.49,Default,,0000,0000,0000,,the reverse power rule here. Dialogue: 0,0:03:14.49,0:03:20.94,Default,,0000,0000,0000,,So we can rewrite this as equal\Nto 1/7 times the integral of u Dialogue: 0,0:03:20.94,0:03:23.75,Default,,0000,0000,0000,,to the 1/2 power du. Dialogue: 0,0:03:23.75,0:03:25.00,Default,,0000,0000,0000,,And let me just make it clear. Dialogue: 0,0:03:25.00,0:03:26.68,Default,,0000,0000,0000,,This u I could have\Nwritten in white Dialogue: 0,0:03:26.68,0:03:27.96,Default,,0000,0000,0000,,if I want it the same color. Dialogue: 0,0:03:27.96,0:03:31.10,Default,,0000,0000,0000,,And this du is the same\Ndu right over here. Dialogue: 0,0:03:31.10,0:03:35.79,Default,,0000,0000,0000,,So what is the antiderivative\Nof u to the 1/2 power? Dialogue: 0,0:03:35.79,0:03:39.05,Default,,0000,0000,0000,,Well, we increment\Nu's power by 1. Dialogue: 0,0:03:39.05,0:03:41.01,Default,,0000,0000,0000,,So this is going to be\Nequal to-- let me not Dialogue: 0,0:03:41.01,0:03:43.26,Default,,0000,0000,0000,,forget this 1/7 out front. Dialogue: 0,0:03:43.26,0:03:49.11,Default,,0000,0000,0000,,So it's going to be 1/7 times--\Nif we increment the power here, Dialogue: 0,0:03:49.11,0:03:55.52,Default,,0000,0000,0000,,it's going to be u to the 3/2,\N1/2 plus 1 is 1 and 1/2 or 3/2. Dialogue: 0,0:03:55.52,0:03:57.28,Default,,0000,0000,0000,,So it's going to\Nbe u to the 3/2. Dialogue: 0,0:03:57.28,0:04:01.03,Default,,0000,0000,0000,, Dialogue: 0,0:04:01.03,0:04:04.14,Default,,0000,0000,0000,,And then we're going to\Nmultiply this new thing Dialogue: 0,0:04:04.14,0:04:07.98,Default,,0000,0000,0000,,times the reciprocal\Nof 3/2, which is 2/3. Dialogue: 0,0:04:07.98,0:04:10.84,Default,,0000,0000,0000,,And I encourage you to verify\Nthe derivative of 2/3 u Dialogue: 0,0:04:10.84,0:04:14.63,Default,,0000,0000,0000,,to the 3/2 is\Nindeed u to the 1/2. Dialogue: 0,0:04:14.63,0:04:15.75,Default,,0000,0000,0000,,And so we have that. Dialogue: 0,0:04:15.75,0:04:17.45,Default,,0000,0000,0000,,And since we're\Nmultiplying 1/7 times Dialogue: 0,0:04:17.45,0:04:19.44,Default,,0000,0000,0000,,this entire indefinite\Nintegral, we Dialogue: 0,0:04:19.44,0:04:21.56,Default,,0000,0000,0000,,could also throw in a\Nplus c right over here. Dialogue: 0,0:04:21.56,0:04:23.43,Default,,0000,0000,0000,,There might have\Nbeen a constant. Dialogue: 0,0:04:23.43,0:04:25.99,Default,,0000,0000,0000,,And if we want, we can\Ndistribute the 1/7. Dialogue: 0,0:04:25.99,0:04:36.17,Default,,0000,0000,0000,,So it would get 1/7 times\N2/3 is 2/21 u to the 3/2. Dialogue: 0,0:04:36.17,0:04:38.75,Default,,0000,0000,0000,,And 1/7 times some\Nconstant, well, that's Dialogue: 0,0:04:38.75,0:04:40.21,Default,,0000,0000,0000,,just going to be some constant. Dialogue: 0,0:04:40.21,0:04:41.96,Default,,0000,0000,0000,,And so I could write\Na constant like that. Dialogue: 0,0:04:41.96,0:04:44.51,Default,,0000,0000,0000,,I could call that c1 and\Nthen I could call this c2, Dialogue: 0,0:04:44.51,0:04:47.14,Default,,0000,0000,0000,,but it's really just\Nsome arbitrary constant. Dialogue: 0,0:04:47.14,0:04:47.85,Default,,0000,0000,0000,,And we're done. Dialogue: 0,0:04:47.85,0:04:49.18,Default,,0000,0000,0000,,Oh, actually, no we aren't done. Dialogue: 0,0:04:49.18,0:04:51.52,Default,,0000,0000,0000,,We still just have our\Nentire thing in terms of u. Dialogue: 0,0:04:51.52,0:04:54.29,Default,,0000,0000,0000,,So now let's unsubstitute it. Dialogue: 0,0:04:54.29,0:05:01.29,Default,,0000,0000,0000,,So this is going to be equal\Nto 2/21 times u to the 3/2. Dialogue: 0,0:05:01.29,0:05:03.71,Default,,0000,0000,0000,,And we already know\Nwhat u is equal to. Dialogue: 0,0:05:03.71,0:05:06.06,Default,,0000,0000,0000,,u is equal to 7x plus 9. Dialogue: 0,0:05:06.06,0:05:08.72,Default,,0000,0000,0000,,Let me put a new color here\Njust to ease the monotony. Dialogue: 0,0:05:08.72,0:05:13.46,Default,,0000,0000,0000,,So it's going to be\N2/21 times 7x plus 9 Dialogue: 0,0:05:13.46,0:05:18.77,Default,,0000,0000,0000,,to the 3/2 power plus c. Dialogue: 0,0:05:18.77,0:05:21.87,Default,,0000,0000,0000,, Dialogue: 0,0:05:21.87,0:05:23.03,Default,,0000,0000,0000,,And we are done. Dialogue: 0,0:05:23.03,0:05:25.50,Default,,0000,0000,0000,,We were able to take a kind\Nof hairy looking integral Dialogue: 0,0:05:25.50,0:05:28.12,Default,,0000,0000,0000,,and realize that even\Nthough it wasn't completely Dialogue: 0,0:05:28.12,0:05:31.87,Default,,0000,0000,0000,,obvious at first, that\Nu-substitution is applicable. Dialogue: 0,0:05:31.87,0:05:32.37,Default,,0000,0000,0000,,