Крiс Андерсон: Ви були кимось
на зразок математичного вундеркінда.
Ви почали викладати у Гарвардi
та MIT ще молодим.
İ потiм вас покликали до АНБ (NSA).
Що це було?
Джим Саймонс: Ну, АНБ --
Агентство національної безпеки --
вони не зовсiм прийшли з пропозицiєю.
Вони проводилу операцію у Принстонi,
де наймали математикiв,
щоб ті ламали
секретнi коди і подібні речі.
І я знав, що таке було.
У них була дуже добра полiтика,
бо половину свого часу можна було
займатися математикою
і, не менше половини часу --
займатися їхніми завданнями.
Вони дуже добре платили.
Тож від цього важко було відмовитись.
І я пiшов до них.
КА: Ви були зламувачем коду.
ДС: Так.
КА: Поки не звiльнили.
ДС: Я зробив так, що звiльнили.
КА: Як це?
ДС: Ну, як?
Мене звiльнили, тому що
була вiйна у В’єтнамi,
і головний бос у моїй органiзацiї
був великим прихильником вiйни.
Вiн написав статтю у Нью-Йорк Таймс,
яка потрапила на обкладинку,
про те, як ми переможемо у В'єтнамі.
Менi не дуже подобалась ця вiйна,
я вважав її безглуздою.
Я написав листа до Таймс,
якого вони надрукували,
в якому сказав, що не всi,
хто працює на Максвелла Тейлора,
якщо хтось ще пам'ятає це ім'я,
згодні з його поглядами.
І я висловив свої власні погляди.
КА: А, добре. Я розумію, це могло --
ДС: які відрізнялися від поглядів
генерала Тейлора.
Але, врешті, ніхто нічого не сказав.
Але потім, мені тоді було 29 років,
до мене прийшов якийсь хлопчина
і сказав що він репортер
журналу Н’юсвік.
Він хотів узяти в мене інтерв’ю
і запитати про мої погляди.
І я сказав йому: "Я зараз переважно
займаюся математикою,
а коли закінчиться війна, тоді я більше
займатимусь їхніми завданнями."
Потім я зробив єдину розумну річ,
з усіх що зробив того дня.
Я розповів своєму місцевому босу,
що я дав це інтерв’ю.
І він запитав: "Що ти сказав?"
Я розповів, що сказав.
І тоді він сказав: "Я мушу
подзвонити Тейлору".
Він подзвонив Тейлору.
Це зайняло 10 хвилин.
Мене було звільнено 5 хвилин потому.
КА: Гаразд.
ДС: Та це не було погано.
КА: Це не було погано, бо
ви пішли до Стоуні Брук
і покращили свою математичну кар’єру.
Тут ви почали працювати з цим чоловіком.
Хто це?
ДС: О, [Шіінґ-Шен] Черн.
Так, Черн був одним із великих
математиків століття.
Я знав його, коли був аспірантом у Берклі.
Я мав деякі ідеї,
виклав їх йому,
і вони йому сподобались.
Разом ми зробили цю роботу,
яку ви можете бачити там, вгорі.
Ось вона.
КА: В результаті, ви разом
опублікували відому статтю.
Чи можете ви пояснити, що це,
взагалі, була за робота?
ДС: Ні.
(Сміх)
ДС: Тобто, я міг би
пояснити її комусь.
(Сміх)
КА: Як щодо пояснення цього?
ДС: Але небагатьом. Небагатьом людям.
КА: Здається ви казали мені, що
це якось стосувалося сфер,
тож почнімо звідси.
ДС: Що ж, так, стосувалося,
але я скажу про ту роботу --
вона певним чином стосувалася,
але перед тим, як перейти до цього --
та робота була хорошою математикою.
Я був дуже задоволений нею. І Черн також.
Вона навіть започаткувала відгалуження
науки, яке зараз у розквіті.
Але ще цікавіше, що вона
знайшла застосування у фізиці,
у тому, про що ми нічого не знали --
принаймні я нічого не знав про фізику,
і не думаю, що Черн багато знав.
Приблизно через 10 років
після публікації статті,
хлопець на ім’я Ед Віттен у Принстоні
почав застосовувати її до теорії струн,
а в Росії почали застосовувати її до того
що називається "конденсоване середовище".
Сьогодні ці речі, які називаються
інваріантами Черна-Саймонса,
поширилися у багатьох галузях фізики.
І це було дивовижно.
Ми взагалі не знали фізики.
Мені ніколи не спадало на думку,
що це застосують у фізиці.
Але така вона, математика --
ніколи не знаєш, де її застосують.
КА: Це просто неймовірно.
Отже, ми говорили про те, як
еволюція змінює розум людини,
який може сприймати
або не сприймати правду.
Так чи інакше, ви розробляєте
математичну теорію,
зовсім не знаючи фізики,
через 20 років дізнаєтеся,
що вона застосовується,
щоб повністю описати
реальний фізичний світ.
Як таке можливо?
ДС: Один Бог знає.
(Сміх)
Але є один відомий фізик,
якого звуть [Юджин] Віґнер,
він написав есе про необґрунтовану
ефективність математики.
Так чи інакше, ця математика,
яка має коріння у реальному світі,
в певному сенсі -- ми вчимося
рахувати, вимірювати, усі це роблять --
потім починає жити самостійним життям.
Але часто вона повертається,
щоб розв'язати складну проблему.
Прикладом є загальна теорія відносності.
[Герман] Мінковський мав цю геометрію,
а Ейнштейн зрозумів:
"Це ж якраз та річ, у яку я можу вписати
загальну теорію відносності".
Отже, ти ніколи не знаєш. Це загадка.
Це загадка.
КА: Тож, ось приклад
математичної винахідливості.
Розкажіть нам про це.
ДС: Ну, це куля -- це сфера,
і вона має решітку навколо себе --
тобто, ось ці квадрати.
Те, що я покажу тут, вперше
помітив [Леонард] Ейлер,
великий математик 18-го століття.
І це поступово стало дуже
важливою галуззю математики:
алгебраїчна топологія, геометрія.
Та стаття мала корені у цій галузі.
Тож, ось ця річ:
вона має 8 вершин,
12 ребер, 6 граней.
І, якщо подивитися на різницю --
вершини мінус ребра плюс грані --
одержимо два.
Гаразд, ну, два. Це хороше число.
Ось інший спосіб зробити це --
трикутники вкривають сферу --
тут є 12 вершин, 30 ребер,
20 граней і 20 пластинок.
Вершини мінус ребра плюс грані
також дорівнює два.
Фактично, ви можете зробити це
будь-яким способом --
вкрити цю штуку різними видами
багатокутників і трикутників
і поєднувати їх.
А якщо віднімете ребра від вершин
і додасте грані -- отримаєте два.
Ось інша фігура.
Це тор, або поверхня
пампушки, -- 16 вершин,
вкритих цими прямокутниками,
32 ребра, 16 граней.
Виходить нуль -- вершини мінус
ребра [плюс грані].
Це завжди буде нуль.
Щоразу, як ви вкриватимете тор
квадратами або трикутниками
або чимось подібним,
ви одержите нуль.
Тож, це називається
характеристика Ейлера.
І це те, що називається
топологічним інваріантом.
Дивовижно.
Байдуже, як ви це робите.
Результат завжди однаковий.
Тож це був перший поштовх,
з середини 18-го століття,
до дисципліни, яка зараз називається
алгебраїчною топологією.
КА: І у вашій роботі ви взяли
подібну ідею і застосували її
до теорії багатовимірного простору,
багатовимірних об’єктів,
і виявили нові інваріанти?
ДС: Так. Ну, тоді вже були
багатовимірні інваріанти:
класи Понтрягіна --
насправді, були класи Черна.
Була ціла купа такого типу інваріантів.
Я щосили старався працювати
над одним із них
і моделювати його, скажімо, комбінаторно,
замість того способу, в який
це зазвичай робилося.
Це вилилося у ту роботу,
і ми знайшли деякі нові речі.
Але якби не пан Ейлер --
який написав майже 70 книжок з математики
і мав 13 дітей,
яких він, певно, гойдав
на коліні, коли писав --
якби не пан Ейлер, то, не було б,
напевно, і цих інваріантів.
КА: Гаразд, тож це, принаймні, дало нам
уявлення про той дивовижний розум.
Поговорімо про Ренесанс.
Бо, спираючись на той дивовижний розум і,
будучи дешифрувальником АНБ,
ви стали дешифрувальником
у фінансовій індустрії.
Я думаю, ви не розробляли
ефективної ринкової теорії.
Ви якось знайшли спосіб генерувати
вражаючі прибутки протягом 20 років.
Як мені це пояснили,
дивовижним у тому, що ви зробили,
була не величина прибутків,
а те, що ви їх отримували з несподівано
низькою волатильністю і ризиком,
порівняно з іншими хедж-фондами.
Тож як, у біса, ви це зробили, Джиме?
ДС: Я зробив це, зібравши
чудову групу людей.
Коли я почав займатися торгами,
я був трохи втомлений від математики.
Мені було під сорок,
у мене було мало грошей.
Я почав торгувати на біржі,
і це пішло дуже добре.
Я заробив досить багато грошей
на чистому везінні.
Тобто, я думаю, то було везіння.
Це, звичайно, не було
математичне моделювання.
Але, дивлячись на дані,
невдовзі я усвідомив:
вони виглядають так, ніби
там є якась структура.
Я найняв кількох математиків,
і ми почали робити деякі моделі --
подібні до тих, які ми робили в IDA
[Інститут оборонного аналізу].
Ви розробляєте алгоритм,
тестуєте його на комп’ютері.
Чи він працює? Чи не працює? Тощо.
КА: Ми можемо поглянути на це?
Бо це типовий графік ціни якогось товару.
Я дивлюсь на це і кажу: "Це просто
випадковий рух вгору-вниз --
можливо, невеликий висхідний тренд
упродовж всього періоду".
Як ви могли торгувати, дивлячись на це,
і бачити щось, що не було
просто випадковим?
ДС: У ті часи -- це один із графіків
зі тих старих часів --
товари або валюти мали
тенденції до трендів.
Не обов’язково дуже легких трендів,
як тут, а циклічних трендів.
І якщо ви вирішували, гаразд,
сьогодні я зроблю прогноз,
спираючись на середні коливання
за останні 20 днів --
можливо, це був би добрий прогноз,
і я заробив би трохи грошей.
Фактично, багато років тому,
така система працювала б --
не бездоганно, але працювала б.
Ви б робили гроші, втрачали
гроші, робили гроші.
Але цінність року в цих днях,
і ви б заробили трохи грошей
протягом цього періоду.
Це система, що вже зникає.
КА: Тож ви перевіряли набір
довжин трендів у часі,
і дивилися, наприклад, чи
10-денний або 15-денний тренд
прогнозував те, що відбувалося далі.
ДС: Авжеж, пробували всі ті речі
і дивилися що працювало найкраще.
Відслідковування тренду
працювало чудово в 60-х.
І більш-менш нормально в 70-х.
На початок 80-х -- вже ні.
КА: Бо кожен міг бачити це.
Тож, як вам вдавалося
залишатися попереду зграї?
ДС: Ми залишалися попереду зграї,
знаходячи інші підходи --
короткотермінові підходи, до певної міри.
Насправді завдання полягало в тому,
щоб зібрати величезний об’єм даних,
і ми мусили збирати їх
вручну, в ті дні.
Ми пішли до Федерального резерву
і скопіювали історію відсоткових ставок
і подібні речі, бо цього
не було в комп’ютерах.
Ми отримали багато даних.
А ще дуже розумні люди -- вони були
ключовим фактором.
Я не знав, як наймати людей для
фундаментального аналізу.
Я найняв кількох -- деякі заробляли гроші,
деякі не заробляли.
Я не міг зробити бізнес на цьому.
Але я знав, як наймати науковців,
бо був знайомий з цією сферою.
Отже, ось що ми зробили.
Поступово ці моделі ставали
все кращими і кращими,
кращими і кращими.
КА: Вам приписують створення
дечого дивовижного в Ренесансі,
а саме, створення цієї
культури, цієї групи людей,
не просто найманих працівників, яких
могли б переманити грошима.
Їх мотивувала до роботи
захоплива математика й наука.
ДС: Ну, сподівався, що це так і було.
Але, частково, це були гроші.
КА: Вони робили великі гроші.
ДС: Не можу сказати, що жоден
не прийшов через гроші.
Думаю, багато з них прийшли через гроші.
Але вони також прийшли,
бо мало бути цікаво.
КА: Яку роль грало в усьому
цьому машинне навчання?
ДС: В певному сенсі, те, що ми робили,
було машинним навчанням.
Дивимось на великий об’єм даних і пробуємо
симулювати різні схеми прогнозів,
поки не почне виходити краще і краще.
Цей процес не обов’язково вдосконалював
сам себе на основі попереднього досвіду.
Але це працювало.
КА: Ці різні схеми прогнозування можуть
бути дуже безладними і непередбачуваними.
Тобто, ви дивилися на все, так?
Ви дивилися на погоду, довжину
суконь, політичні погляди.
ДС: Так, довжину суконь ми не пробували.
КА: Якого роду речі?
ДС: Ну, все.
Усе є потенційно важливим --
крім довжин швів.
Погода, річні звіти,
квартальні звіти, історичні дані,
об’єми, усе що завгодно.
Усе що є.
Ми отримуємо терабайти даних за день.
Зберігаємо їх, обробляємо
і готуємо до аналізу.
Треба шукати аномалії.
Треба шукати -- як ви сказали,
ефективна ринкова гіпотеза
не є правильною.
КА: Але будь-яка аномалія
може бути просто випадковістю.
Тож, секрет у тому, щоб просто перевіряти
численні дивні аномалії і дивитися,
коли вони узгодяться?
ДС: Будь-яка аномалія
може бути випадковістю.
Однак якщо у вас достатньо
даних, можна розрізнити.
Можна побачити аномалію, яка
повторюється достатньо довгий час --
імовірність того, що це
випадковість, невисока.
Але ці речі слабшають з часом;
аномалії можуть стати непридатними.
Отже, вам треба залишатися
на вершині цього бізнесу.
КА: Багато людей зараз дивляться
на індустрію хедж-фондів
і вражені тим,
які багатства там створюються,
і як багато талантів туди залучається.
У вас не викликає якогось
занепокоєння те, що ця індустрія,
і, можливо, фінансова галузь загалом,
стає чимось на зразок
поїзда, що зійшов з рейок --
поглиблюючи нерівність?
Що б ви сказали на захист того, що
відбувається в індустрії хедж-фондів?
ДС: Я думаю, в останні три-чотири роки,
хедж-фонди були не особливо успішні.
У нас все було файно,
але індустрія хедж-фондів у цілому
не була така успішна.
Фондовий ринок був на підйомі,
зростав, як усім відомо,
і співвідношення ціна/прибуток зростали.
Тож величезні об’єми багатств
створених за останні, скажімо,
п’ять або шість років -- не були
створені хедж-фондами.
Люди запитують мене:
"Що таке хедж-фонд?"
А я кажу: "Один і двадцять".
Що означає -- тепер це 2 і 20 --
це два відсотки фіксованої плати
і 20 відсотків від прибутків.
Кожен хедж-фонд - це окремий "звір".
КА: Ходять чутки, що ваші
розцінки трохи вищі.
ДС: Колись наші розцінки
були найвищими у світі.
П’ять і 44, це наші розцінки.
КА: П’ять і 44.
Отже, п’ять відсотків фіксованої оплати
і 44 відсотки від прибутку.
І все ж, ви заробляєте для ваших
інвесторів величезні гроші.
ДС: Мали добрі прибутки, так.
Люди дуже обурювались:
"Як ви можете брати так дорого?"
Я казав: "Добре, можете відмовитися".
Але "Як я зможу заробити
більше?", -- відповідали люди.
(Сміх)
Проте в певний момент,
як, здається, я казав вам,
ми викупили акції всіх інвесторів, бо
у фонду є така можливість.
КА: Але чи варто нам
хвилюватися, що хедж-фонди
приваблюють забагато блискучих математиків
та інших талановитих людей в усьому світі,
щоб працювати на них, замість
розв'язувати численні проблеми в світі?
ДС: Ну, не лише математиків.
Ми наймаємо астрономів,
фізиків і подібних фахівців.
Не думаю, що варто дуже
хвилюватися з цього приводу.
Це все ще досить маленька індустрія.
Насправді, залучення
науки у світ інвестицій
покращило цей світ.
Зменшило волатильність.
Збільшило ліквідність.
Спреди стали вужчими,
бо люди торгують. І так далі.
Тож я не хвилююсь, що Ейншейн
піде з науки і створить хедж-фонд.
КА: Ви зараз на тому етапі життя,
коли, насправді, інвестуєте, хоча
на іншому кінці ланцюжка --
ви насправді піднімаєте
математику по всій Америці.
Це ваша дружина, Мерилін.
Ви займаєтесь благодійністю разом.
Розкажіть про це.
ДС: Отже, Мерилін започаткувала --
ось вона, моя чудова дружина, --
вона започаткувала фонд
близько 20 років тому.
Здається в 1994-му.
Я кажу, це був 93-й, вона каже, що 94-й,
але це сталося в один із тих двох років.
(Сміх)
Ми заснували фонд, просто щоб було
зручніше жертвувати на благодійність.
Вона займалась бухгалтерією та іншим.
Тоді у нас не було бачення,
але поступово воно з’явилося --
зосередитися на математиці й науці,
на фундаментальних дослідженнях.
Саме це ми й зробили.
Близько шести років тому я залишив
Ренесанс і пішов працювати у фонд.
Тож це те, чим ми займаємось.
КА: Тож, по суті, Математика
для Америки інвестує
у вчителів математики по всій країні,
надаючи їм додаткові надходження,
надаючи підтримку й навчання.
І справді намагаючись
підвищити їхню ефективність
і зробити це професією,
якої вчителі прагнутимуть.
ДС: Так -- замість того, щоб
звинувачувати поганих вчителів,
що створює моральні проблеми
в усій освітній спільноті,
особливо в математиці
та природничих науках,
ми зосереджуємось на підтримці
хороших вчителів і даємо їм статус.
Так, ми даємо їм додаткові гроші,
15 000 доларів на рік.
У нас є 800 вчителів природничих наук і
математики в державних школах Нью-Йорка,
як основна група.
У цій спільноті панує
чудовий моральний стан.
Вони тримаються у своїй сфері.
Наступного року їх буде 1000,
і це буде 10 відсотків
усіх вчителів математики і наук
державних шкіл міста Нью-Йорк.
(Оплески)
КА: Джиме, ось інший проект, який
ви підтримуєте пожертвами.
Дослідження походження життя, здається.
Що ми тут бачимо?
ДС: Я повернусь до цього за хвильку.
І тоді скажу вам, що ми тут бачимо.
Походження життя - захопливе питання.
Як ми тут опинилися?
Тож, є два питання:
Одне -- яким є шлях
від геології до біології --
як ми тут опинилися?
А інше питання - це
з чого ми почалися?
З яким матеріалом, якщо він був,
ми мали працювати на цьому шляху?
Це два дуже-дуже цікавих питання.
Перше з них - непростий шлях
від геології до РНК
або чогось такого --
як це все працювало?
А інше -- з яким матеріалом
ми маємо працювати?
Ну, матеріалу більше, ніж ми думаємо.
Отже, тут зображено
зірку на етапі формування.
Щороку в нашому Чумацькому Шляху,
де є 100 мільярдів зірок,
утворюється приблизно дві нові зірки.
Не питайте мене як, але вони утворюються.
І їм треба приблизно мільйон років
на те, щоб стабілізуватися.
Отже, у стаціонарному стані
є близько двох мільйонів зірок,
що формуються, в будь-який момент часу.
Ця зірка перебуває десь
посередині періоду стабілізації.
І навколо неї обертається усіляке сміття,
пил, речовини.
З цього, певно, сформується,
сонячна система, або що завгодно.
Але ось у чому річ --
у цьому пилові, що оточує
зірку, яка формується,
знаходять важливі органічні молекули.
Не просто молекули, подібні до метану,
а формальдегід і ціанід --
речі, які є будівельними блоками --
зародками, якщо хочете -- життя.
Отже, це може бути типовим розвитком.
І може бути типовим те, що
планети в усьому Всесвіті
зароджуються, вже маючи
деякі з цих будівельних блоків.
Тож, чи означає це, що життя буде повсюди?
Можливо.
Але це питання того, наскільки
складним є цей шлях
від тих крихких початкових блоків,
тих зародків, аж до життя.
Більшість з тих зародків загинуть
на недорозвинутих планетах.
КА: Тож для вас, особисто,
знайти відповідь на це питання,
звідки ми прийшли,
як це відбулося, -- це дещо,
про що, ви хотіли би дізнатися.
ДС: Хотів би дізнатися.
І хотів би знати --
чи той шлях є настільки
складний і малоімовірний,
що з чого б ви не почали,
ми, можливо, єдині у Всесвіті.
Але, з іншого боку,
враховуючи увесь цей
органічний пил, що літає навколо,
ми можемо мати багато друзів десь там.
Було б чудово дізнатися.
КА: Джиме, пару років тому, я мав нагоду
поспілкуватися з Ілоном Маском,
і я запитав про таємницю його успіху.
Він сказав, що це було серйозне
ставлення до фізики.
Слухаючи вас, я чую, що саме
серйозне ставлення до математики
окриляло вас усе ваше життя.
Воно дало вам великі статки,
а тепер дає вам змогу інвестувати
у майбутнє тисяч і тисяч дітей
по всій Америці і деінде.
Чи може бути, що наука насправді працює?
Що математика насправді працює?
ДС: Ну, математика безумовно працює.
Математика безумовно працює.
Але це також цікаво.
Працювати з Мерилін і займатися
благодійністю дуже приємно.
КА: Я вважаю, і ця думка
мене дуже надихає,
що ставлячись до знань серйозно,
можна досягти надзвичайних результатів.
Дякую за ваше дивовижне життя,
і за те що завітали сюди, на TED.
Дякую.
Джим Саймонс!
(Оплески)