WEBVTT 00:00:00.000 --> 00:00:00.840 有人要求讲一下 00:00:00.840 --> 00:00:04.090 证明√x的导数 00:00:04.090 --> 00:00:06.300 所以这集快速证明一下 00:00:06.300 --> 00:00:08.300 √x的导数 00:00:08.300 --> 00:00:10.370 由导数的定义可知 00:00:10.370 --> 00:00:13.680 函数√x的导数 00:00:13.680 --> 00:00:22.280 换颜色 更多样一些 00:00:22.280 --> 00:00:26.520 它等于Δx趋于0时的极限 00:00:26.520 --> 00:00:33.080 有人也说h趋于0 00:00:33.080 --> 00:00:35.595 或d趋于0 这里用Δx 00:00:35.595 --> 00:00:36.360 Δx趋于0时 00:00:36.360 --> 00:00:37.450 然后f(x+Δx) 00:00:37.450 --> 00:00:39.450 此处这是f(x) 00:00:39.450 --> 00:00:41.830 所以它是√(x+Δx)-f(x) 00:00:41.830 --> 00:00:42.910 此处即√x 00:00:42.910 --> 00:00:52.260 整体/x的变化量Δx 00:00:52.260 --> 00:00:54.640 现在看这个式子 00:00:54.640 --> 00:00:57.140 还不能化简 00:00:57.140 --> 00:01:00.040 使它变得适于分析 00:01:00.040 --> 00:01:02.580 那么分子和分母同乘以 00:01:02.580 --> 00:01:04.945 分子的共轭根式 什么意思呢? 00:01:04.945 --> 00:01:09.940 把它写下来 00:01:09.940 --> 00:01:12.540 Δx趋于0时的极限 00:01:12.540 --> 00:01:13.790 把这再写下来 00:01:13.790 --> 00:01:14.200 即√(x+Δx) 00:01:14.200 --> 00:01:15.480 -√x 00:01:15.480 --> 00:01:19.740 整体/Δx 00:01:19.740 --> 00:01:21.280 换颜色 将它乘以 00:01:21.280 --> 00:01:26.650 √(x+Δx) 00:01:26.650 --> 00:01:28.610 +√x 除以 00:01:28.610 --> 00:01:31.200 √(x+Δx)+√x 00:01:31.200 --> 00:01:34.490 这只是1 显然可以相乘 00:01:34.490 --> 00:01:41.840 假设x和Δx都不为0 00:01:41.840 --> 00:01:48.260 这是一个定值 为1 00:01:48.260 --> 00:01:49.250 可以相乘 00:01:49.250 --> 00:01:53.420 这是1/1 将它乘以这个式子 00:01:53.420 --> 00:01:57.110 得到当Δx趋于0时 00:01:57.110 --> 00:01:59.090 这是(a-b)(a+b) 00:01:59.090 --> 00:02:00.010 在这旁边列出来 00:02:00.010 --> 00:02:02.130 (a+b)(a-b) 00:02:02.130 --> 00:02:10.900 =a^2-b^2 00:02:10.900 --> 00:02:13.510 这是(a+b)(a-b) 00:02:13.510 --> 00:02:15.360 所以它等于a^2 00:02:15.360 --> 00:02:20.880 那么这个量的平方是什么 00:02:20.880 --> 00:02:23.150 两个都可以 都代表a 00:02:23.150 --> 00:02:26.600 是x+Δx 00:02:26.600 --> 00:02:29.410 那么得到x+Δx 00:02:29.410 --> 00:02:32.010 然后b^2呢? 00:02:32.010 --> 00:02:33.180 -√x类比为b 00:02:33.180 --> 00:02:35.450 那么(√x)^2=x 00:02:35.450 --> 00:02:39.430 整体/(Δx・ 00:02:39.430 --> 00:02:41.050 (√(x+Δx)+√x)) 00:02:41.050 --> 00:02:46.380 看看怎么化简 00:02:46.380 --> 00:02:50.640 这里有x和-x 00:02:50.640 --> 00:02:56.760 两者抵消了 x-x 00:02:56.760 --> 00:03:04.210 然后分子和分母上剩下的 00:03:04.210 --> 00:03:05.900 都有Δx 00:03:05.900 --> 00:03:08.580 分子和分母同除以Δx 00:03:08.580 --> 00:03:11.480 都变为1 00:03:11.480 --> 00:03:13.460 所以它= 写的小点 00:03:13.460 --> 00:03:15.690 因为没地方了 00:03:15.690 --> 00:03:18.770 =Δx趋于0时的极限 1/ 00:03:18.770 --> 00:03:22.822 显然只有假设Δx-- 00:03:22.822 --> 00:03:26.350 一开始除以Δx 00:03:26.350 --> 00:03:34.920 所以它不为0 只是趋于0 00:03:34.920 --> 00:03:37.780 那么得到√(x+Δx) 00:03:37.780 --> 00:03:40.220 +√x 00:03:40.220 --> 00:03:42.420 现在直接求Δx趋于0时 00:03:42.420 --> 00:03:50.320 它的极限 00:03:50.320 --> 00:03:51.860 只需设Δx=0 00:03:51.860 --> 00:03:53.550 即趋于0的含义 00:03:53.550 --> 00:03:54.410 那么等于1/√x 00:03:54.410 --> 00:03:56.440 对吗?Δx=0 可以忽略 00:03:56.440 --> 00:03:58.140 取其极限一直到0 00:03:58.140 --> 00:04:04.260 然后这显然还是√x 00:04:04.260 --> 00:04:06.790 +√x 00:04:06.790 --> 00:04:09.120 =1/(2√x) 00:04:09.120 --> 00:04:13.000 =(1/2)x^(-1/2) 00:04:13.000 --> 00:04:17.160 刚才证明了x^(1/2) 00:04:17.160 --> 00:04:19.350 的导数为(1/2)x^(-1/2) 00:04:19.350 --> 00:04:24.890 它跟一般情况一致 00:04:24.890 --> 00:04:28.900 即求导 00:04:28.900 --> 00:04:35.220 x^n的导数为 00:04:35.220 --> 00:04:41.700 n・x^(n-1) 即使此处n=1/2 00:04:41.700 --> 00:04:50.850 也是合乎情况的 00:04:50.850 --> 00:04:55.150 未就所有的分数都给出证明 但这是开始 00:04:55.150 --> 00:04:56.100 这是常见的一个 √x 00:04:56.100 --> 00:04:58.960 好在证明起来不很复杂 00:04:58.960 --> 00:05:01.120 下一集再见