[Script Info] Title: [Events] Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text Dialogue: 0,0:00:00.00,0:00:03.14,Default,,0000,0000,0000,,♪ (música) ♪ Dialogue: 0,0:00:03.39,0:00:05.63,Default,,0000,0000,0000,,- [Narradora] Bienvenidos\Na Nobel Conversations. Dialogue: 0,0:00:06.99,0:00:10.09,Default,,0000,0000,0000,,En este episodio,\NJosh Angrist y Guido Imbens Dialogue: 0,0:00:10.09,0:00:13.37,Default,,0000,0000,0000,,se reúnen con Isaiah Andrews\Npara discutir y discrepar Dialogue: 0,0:00:13.37,0:00:15.22,Default,,0000,0000,0000,,sobre el papel\Ndel aprendizaje automático Dialogue: 0,0:00:15.22,0:00:16.82,Default,,0000,0000,0000,,en la econometría aplicada. Dialogue: 0,0:00:17.89,0:00:19.90,Default,,0000,0000,0000,,- [Isaiah] Bien. Por supuesto\Nque hay muchos temas Dialogue: 0,0:00:19.90,0:00:21.46,Default,,0000,0000,0000,,en los que ustedes\Nestán muy de acuerdo, Dialogue: 0,0:00:21.46,0:00:22.60,Default,,0000,0000,0000,,pero me gustaría pasar a uno Dialogue: 0,0:00:22.60,0:00:24.36,Default,,0000,0000,0000,,sobre el que tal vez\Nopinen algo distinto. Dialogue: 0,0:00:24.36,0:00:26.10,Default,,0000,0000,0000,,Me gustaría escuchar\Nalgunas de sus opiniones Dialogue: 0,0:00:26.10,0:00:27.32,Default,,0000,0000,0000,,sobre el aprendizaje automático Dialogue: 0,0:00:27.32,0:00:30.26,Default,,0000,0000,0000,,y el papel que desempeña\Ny desempeñará en la economía. Dialogue: 0,0:00:30.26,0:00:31.86,Default,,0000,0000,0000,,- [Guido] He consultado\Nalgunos datos, Dialogue: 0,0:00:31.86,0:00:33.35,Default,,0000,0000,0000,,como los datos privados. Dialogue: 0,0:00:33.35,0:00:35.31,Default,,0000,0000,0000,,Vemos que no hay\Nningún documento publicado allí. Dialogue: 0,0:00:35.98,0:00:39.43,Default,,0000,0000,0000,,Se hizo un experimento\Nsobre algún algoritmo de búsqueda Dialogue: 0,0:00:39.43,0:00:41.08,Default,,0000,0000,0000,,y la cuestión era... Dialogue: 0,0:00:42.58,0:00:45.49,Default,,0000,0000,0000,,se trataba de clasificar cosas\Ny cambiar la clasificación. Dialogue: 0,0:00:45.99,0:00:47.16,Default,,0000,0000,0000,,Y estaba más o menos claro Dialogue: 0,0:00:47.16,0:00:50.27,Default,,0000,0000,0000,,que iba a haber\Nmucha heterogeneidad. Dialogue: 0,0:00:51.12,0:00:55.86,Default,,0000,0000,0000,,Si buscas, digamos, Dialogue: 0,0:00:58.12,0:01:00.64,Default,,0000,0000,0000,,una foto de Britney Spears, Dialogue: 0,0:01:00.64,0:01:02.50,Default,,0000,0000,0000,,realmente no importa\Ndónde la clasifiques Dialogue: 0,0:01:02.50,0:01:05.21,Default,,0000,0000,0000,,porque vas a encontrar\Nlo que estás buscando, Dialogue: 0,0:01:05.74,0:01:07.06,Default,,0000,0000,0000,,ya sea que la clasifiques Dialogue: 0,0:01:07.06,0:01:09.74,Default,,0000,0000,0000,,en primera, segunda\No tercera posición. Dialogue: 0,0:01:10.03,0:01:12.35,Default,,0000,0000,0000,,Pero si estás buscando\Nel mejor libro de econometría, Dialogue: 0,0:01:12.35,0:01:16.51,Default,,0000,0000,0000,,si pones tu libro en primer lugar\No en el décimo, Dialogue: 0,0:01:16.51,0:01:18.14,Default,,0000,0000,0000,,eso va a suponer\Nuna gran diferencia Dialogue: 0,0:01:18.14,0:01:19.84,Default,,0000,0000,0000,,en la frecuencia Dialogue: 0,0:01:19.84,0:01:21.29,Default,,0000,0000,0000,,con la que la gente\Nhará clic en él. Dialogue: 0,0:01:22.09,0:01:23.31,Default,,0000,0000,0000,,Así que ahí-- Dialogue: 0,0:01:23.31,0:01:24.33,Default,,0000,0000,0000,,[Josh] ¿Por qué necesito Dialogue: 0,0:01:24.33,0:01:27.31,Default,,0000,0000,0000,,el aprendizaje automático\Npara descubrir eso? Dialogue: 0,0:01:27.31,0:01:29.46,Default,,0000,0000,0000,,Porque parece que puedo descubrirlo\Nde forma sencilla. Dialogue: 0,0:01:29.46,0:01:30.52,Default,,0000,0000,0000,,- [Guido] En general-- Dialogue: 0,0:01:30.52,0:01:32.23,Default,,0000,0000,0000,,- [Josh] Había\Nun montón de posibles-- Dialogue: 0,0:01:32.23,0:01:34.23,Default,,0000,0000,0000,,- [Guido]...quieres pensar\Nque los artículos Dialogue: 0,0:01:34.23,0:01:37.09,Default,,0000,0000,0000,,tienen montón de características, Dialogue: 0,0:01:37.09,0:01:38.94,Default,,0000,0000,0000,,que quieres entender Dialogue: 0,0:01:38.94,0:01:43.65,Default,,0000,0000,0000,,lo que impulsa la heterogeneidad\Nen el efecto de-- Dialogue: 0,0:01:43.67,0:01:44.88,Default,,0000,0000,0000,,- Pero solo estás prediciendo. Dialogue: 0,0:01:44.88,0:01:46.06,Default,,0000,0000,0000,,En cierto sentido, Dialogue: 0,0:01:46.06,0:01:47.79,Default,,0000,0000,0000,,estás resolviendo\Nun problema de marketing. Dialogue: 0,0:01:47.79,0:01:49.21,Default,,0000,0000,0000,,- No, es un efecto causal, Dialogue: 0,0:01:49.21,0:01:51.74,Default,,0000,0000,0000,,- Es causal, pero no tiene\Ncontenido científico. Dialogue: 0,0:01:51.74,0:01:52.81,Default,,0000,0000,0000,,Piensa en-- Dialogue: 0,0:01:53.67,0:01:57.24,Default,,0000,0000,0000,,- No, pero hay cosas similares\Nen el ámbito médico. Dialogue: 0,0:01:57.69,0:01:59.31,Default,,0000,0000,0000,,Si haces un experimento, Dialogue: 0,0:01:59.31,0:02:02.49,Default,,0000,0000,0000,,puedes estar muy interesado\Nen si el tratamiento funciona Dialogue: 0,0:02:02.49,0:02:03.82,Default,,0000,0000,0000,,para algunos grupos o no. Dialogue: 0,0:02:03.82,0:02:05.95,Default,,0000,0000,0000,,Y tienes un montón\Nde características individuales, Dialogue: 0,0:02:05.95,0:02:08.11,Default,,0000,0000,0000,,y quieres buscar sistemáticamente-- Dialogue: 0,0:02:08.11,0:02:09.88,Default,,0000,0000,0000,,- Sí. Tengo mis dudas sobre esa... Dialogue: 0,0:02:09.88,0:02:12.59,Default,,0000,0000,0000,,esa especie de idea de que hay\Nun efecto causal personal Dialogue: 0,0:02:12.59,0:02:13.90,Default,,0000,0000,0000,,que me debería importar Dialogue: 0,0:02:13.90,0:02:15.16,Default,,0000,0000,0000,,y que el aprendizaje automático Dialogue: 0,0:02:15.16,0:02:17.10,Default,,0000,0000,0000,,puede descubrirlo\Nde alguna manera que sea útil. Dialogue: 0,0:02:17.52,0:02:18.68,Default,,0000,0000,0000,,Así que piensa en-- Dialogue: 0,0:02:18.68,0:02:20.18,Default,,0000,0000,0000,,he trabajado mucho en las escuelas, Dialogue: 0,0:02:20.18,0:02:22.36,Default,,0000,0000,0000,,yendo a, digamos,\Nuna escuela chárter, Dialogue: 0,0:02:22.36,0:02:24.50,Default,,0000,0000,0000,,una escuela privada\Nfinanciada con fondos públicos, Dialogue: 0,0:02:24.78,0:02:27.39,Default,,0000,0000,0000,,efectivamente,\Nque es libre de estructurar Dialogue: 0,0:02:27.39,0:02:29.59,Default,,0000,0000,0000,,su propio plan de estudios\Nen función del contexto. Dialogue: 0,0:02:29.59,0:02:30.94,Default,,0000,0000,0000,,Algunos tipos de escuelas chárter Dialogue: 0,0:02:30.94,0:02:33.38,Default,,0000,0000,0000,,consiguen\Nun rendimiento espectacular Dialogue: 0,0:02:33.38,0:02:36.32,Default,,0000,0000,0000,,y en el conjunto de datos\Nque produce ese resultado, Dialogue: 0,0:02:36.32,0:02:37.97,Default,,0000,0000,0000,,tengo un montón de covariables. Dialogue: 0,0:02:37.97,0:02:39.58,Default,,0000,0000,0000,,Tengo\Nlas puntuaciones de referencia Dialogue: 0,0:02:39.58,0:02:41.32,Default,,0000,0000,0000,,y los antecedentes familiares, Dialogue: 0,0:02:41.32,0:02:45.52,Default,,0000,0000,0000,,la educación de los padres,\Nel sexo del niño, la raza del niño. Dialogue: 0,0:02:46.06,0:02:49.76,Default,,0000,0000,0000,,Y, bueno, en cuanto reúno\Nmedia docena de ellas, Dialogue: 0,0:02:49.76,0:02:51.75,Default,,0000,0000,0000,,tengo un espacio\Nde muy alta dimensión. Dialogue: 0,0:02:52.39,0:02:55.39,Default,,0000,0000,0000,,Sin duda, me interesan\Nlas características del curso Dialogue: 0,0:02:55.39,0:02:56.80,Default,,0000,0000,0000,,de ese efecto del tratamiento, Dialogue: 0,0:02:56.80,0:02:58.69,Default,,0000,0000,0000,,como por ejemplo, si es mejor\Npara las personas Dialogue: 0,0:02:58.69,0:03:02.05,Default,,0000,0000,0000,,que provienen de familias\Ncon menores ingresos. Dialogue: 0,0:03:02.38,0:03:05.66,Default,,0000,0000,0000,,Me cuesta creer\Nque haya una aplicación Dialogue: 0,0:03:05.66,0:03:09.97,Default,,0000,0000,0000,,para la versión\Nde muy alta dimensión, Dialogue: 0,0:03:09.97,0:03:12.50,Default,,0000,0000,0000,,en la que descubrí\Nque para los niños no blancos Dialogue: 0,0:03:12.50,0:03:15.03,Default,,0000,0000,0000,,que tienen\Ningresos familiares altos Dialogue: 0,0:03:15.03,0:03:17.75,Default,,0000,0000,0000,,pero puntuaciones de referencia\Nen el tercer cuartil Dialogue: 0,0:03:17.75,0:03:20.54,Default,,0000,0000,0000,,y que solo fueron\Na la escuela pública Dialogue: 0,0:03:20.54,0:03:23.13,Default,,0000,0000,0000,,en el tercer grado\Npero no en el sexto. Dialogue: 0,0:03:23.13,0:03:25.68,Default,,0000,0000,0000,,Así que eso es lo que produce\Nese análisis de alta dimensión. Dialogue: 0,0:03:25.68,0:03:27.94,Default,,0000,0000,0000,,Es una declaración condicional\Nmuy elaborada. Dialogue: 0,0:03:27.94,0:03:30.70,Default,,0000,0000,0000,,Hay dos cosas que están mal,\Nen mi opinión. Dialogue: 0,0:03:30.70,0:03:32.42,Default,,0000,0000,0000,,En primer lugar, no lo veo como-- Dialogue: 0,0:03:32.42,0:03:34.49,Default,,0000,0000,0000,,no puedo imaginar\Npor qué es algo procesable. Dialogue: 0,0:03:34.49,0:03:36.52,Default,,0000,0000,0000,,No sé por qué\Nquerrías actuar sobre ello. Dialogue: 0,0:03:36.52,0:03:39.38,Default,,0000,0000,0000,,Y también sé que hay\Nalgún modelo alternativo Dialogue: 0,0:03:39.38,0:03:42.86,Default,,0000,0000,0000,,que encaja casi igual de bien,\Nque lo invierte todo. Dialogue: 0,0:03:42.98,0:03:44.59,Default,,0000,0000,0000,,Porque el aprendizaje automático Dialogue: 0,0:03:44.59,0:03:48.47,Default,,0000,0000,0000,,no me dice que este es realmente\Nel predictor que importa, Dialogue: 0,0:03:48.47,0:03:50.78,Default,,0000,0000,0000,,solo me dice\Nque este es un buen predictor. Dialogue: 0,0:03:51.40,0:03:54.88,Default,,0000,0000,0000,,Así que creo,\Nque hay algo diferente Dialogue: 0,0:03:54.88,0:03:57.69,Default,,0000,0000,0000,,en el contexto\Nde las ciencias sociales. Dialogue: 0,0:03:57.69,0:04:00.27,Default,,0000,0000,0000,,- [Guido] Creo que las aplicaciones\Nde las ciencias sociales Dialogue: 0,0:04:00.27,0:04:03.92,Default,,0000,0000,0000,,de las que hablas\Nson aquellas en las que, creo, Dialogue: 0,0:04:03.92,0:04:07.92,Default,,0000,0000,0000,,no hay una gran cantidad\Nde heterogeneidad en los efectos. Dialogue: 0,0:04:09.76,0:04:13.61,Default,,0000,0000,0000,,- [Josh] Bueno, podría haberla\Nsi me permites llenar ese espacio. Dialogue: 0,0:04:13.61,0:04:15.65,Default,,0000,0000,0000,,- No... ni siquiera entonces. Dialogue: 0,0:04:15.65,0:04:18.51,Default,,0000,0000,0000,,Creo que para muchas\Nde esas intervenciones, Dialogue: 0,0:04:18.51,0:04:22.84,Default,,0000,0000,0000,,se espera que el efecto\Nsea del mismo signo para todos. Dialogue: 0,0:04:23.06,0:04:27.32,Default,,0000,0000,0000,,Puede haber pequeñas diferencias\Nen la magnitud, pero no es... Dialogue: 0,0:04:27.58,0:04:29.97,Default,,0000,0000,0000,,Porque muchas de estas\Ndiferencias educativas Dialogue: 0,0:04:29.97,0:04:31.61,Default,,0000,0000,0000,,son buenas para todos. Dialogue: 0,0:04:31.61,0:04:35.93,Default,,0000,0000,0000,,No es que sean malas\Npara algunas personas Dialogue: 0,0:04:35.93,0:04:37.41,Default,,0000,0000,0000,,y buenas para otras Dialogue: 0,0:04:37.41,0:04:39.80,Default,,0000,0000,0000,,y en algunos pequeños casos\Npueden ser malas. Dialogue: 0,0:04:40.19,0:04:43.63,Default,,0000,0000,0000,,Pero puede haber\Nalgo de variación en la magnitud, Dialogue: 0,0:04:43.63,0:04:44.81,Default,,0000,0000,0000,,pero se necesitarían Dialogue: 0,0:04:44.81,0:04:47.02,Default,,0000,0000,0000,,conjuntos de datos\Nmuy muy grandes para encontrarlos. Dialogue: 0,0:04:47.02,0:04:48.98,Default,,0000,0000,0000,,Estoy de acuerdo en que,\Nen esos casos, Dialogue: 0,0:04:48.98,0:04:51.39,Default,,0000,0000,0000,,probablemente no serían\Nmuy procesables de todos modos. Dialogue: 0,0:04:51.88,0:04:54.08,Default,,0000,0000,0000,,Pero creo que hay\Nmuchos otros escenarios Dialogue: 0,0:04:54.08,0:04:56.48,Default,,0000,0000,0000,,donde hay mucha más heterogeneidad. Dialogue: 0,0:04:56.74,0:04:59.16,Default,,0000,0000,0000,,- Bueno, estoy abierto\Na esa posibilidad Dialogue: 0,0:04:59.16,0:05:00.98,Default,,0000,0000,0000,,y creo que el ejemplo que has dado Dialogue: 0,0:05:00.98,0:05:04.86,Default,,0000,0000,0000,,es esencialmente\Nun ejemplo de marketing. Dialogue: 0,0:05:05.94,0:05:09.71,Default,,0000,0000,0000,,- No, esos tienen\Nimplicaciones para ello Dialogue: 0,0:05:09.71,0:05:11.60,Default,,0000,0000,0000,,y esa es la organización, Dialogue: 0,0:05:11.60,0:05:15.36,Default,,0000,0000,0000,,si tienes que preocuparte por la-- Dialogue: 0,0:05:15.36,0:05:17.86,Default,,0000,0000,0000,,- Bueno, necesito\Nver ese documento. Dialogue: 0,0:05:18.29,0:05:21.49,Default,,0000,0000,0000,,- Así que, la sensación\Nque tengo es que... Dialogue: 0,0:05:21.49,0:05:23.37,Default,,0000,0000,0000,,- Todavía no estamos de acuerdo\Nen algo. Dialogue: 0,0:05:23.37,0:05:25.74,Default,,0000,0000,0000,,- Sí.\N- No hemos coincidido en todo. Dialogue: 0,0:05:25.74,0:05:27.39,Default,,0000,0000,0000,,- Tengo esa sensación.\N[risas] Dialogue: 0,0:05:27.39,0:05:29.05,Default,,0000,0000,0000,,- En realidad,\Nhemos discrepado en esto Dialogue: 0,0:05:29.05,0:05:30.73,Default,,0000,0000,0000,,porque no estaba para discutir. Dialogue: 0,0:05:30.73,0:05:33.14,Default,,0000,0000,0000,,[risas] Dialogue: 0,0:05:33.14,0:05:35.06,Default,,0000,0000,0000,,- ¿Se está poniendo\Nalgo caluroso aquí? Dialogue: 0,0:05:35.72,0:05:37.85,Default,,0000,0000,0000,,- Caluroso.\NEs bueno que esté caluroso. Dialogue: 0,0:05:37.85,0:05:39.50,Default,,0000,0000,0000,,La sensación que tengo es, Josh, Dialogue: 0,0:05:39.50,0:05:41.95,Default,,0000,0000,0000,,que no estás diciendo\Nque estás seguro Dialogue: 0,0:05:41.95,0:05:44.16,Default,,0000,0000,0000,,de que no hay manera\Nde que haya una aplicación Dialogue: 0,0:05:44.16,0:05:45.67,Default,,0000,0000,0000,,en la que estas cosas sean útiles. Dialogue: 0,0:05:45.67,0:05:47.17,Default,,0000,0000,0000,,Estás diciendo\Nque no estás convencido Dialogue: 0,0:05:47.17,0:05:49.44,Default,,0000,0000,0000,,con las aplicaciones existentes\Nhasta la fecha. Dialogue: 0,0:05:49.91,0:05:51.66,Default,,0000,0000,0000,,- Me parece bien.\N- Estoy muy seguro. Dialogue: 0,0:05:51.86,0:05:54.18,Default,,0000,0000,0000,,[risas] Dialogue: 0,0:05:54.18,0:05:55.27,Default,,0000,0000,0000,,- En este caso. Dialogue: 0,0:05:55.27,0:05:56.54,Default,,0000,0000,0000,,- Creo que Josh tiene razón Dialogue: 0,0:05:56.54,0:06:00.10,Default,,0000,0000,0000,,en que incluso\Nen los casos de predicción, Dialogue: 0,0:06:00.10,0:06:03.76,Default,,0000,0000,0000,,donde muchos de los métodos\Nde aprendizaje automática Dialogue: 0,0:06:03.76,0:06:06.52,Default,,0000,0000,0000,,realmente se destacan es donde hay\Nun montón de heterogeneidad. Dialogue: 0,0:06:06.78,0:06:10.40,Default,,0000,0000,0000,,- No te importan mucho\Nlos detalles, ¿verdad? Dialogue: 0,0:06:10.40,0:06:11.48,Default,,0000,0000,0000,,- [Guido] Sí. Dialogue: 0,0:06:11.48,0:06:14.75,Default,,0000,0000,0000,,- No tiene un ángulo normativo\No algo así. Dialogue: 0,0:06:14.75,0:06:17.54,Default,,0000,0000,0000,,- El reconocimiento\Nde dígitos escritos a mano Dialogue: 0,0:06:17.54,0:06:18.57,Default,,0000,0000,0000,,y demás... Dialogue: 0,0:06:18.72,0:06:23.86,Default,,0000,0000,0000,,lo hace mucho mejor\Nque construir un modelo complicado. Dialogue: 0,0:06:24.20,0:06:26.92,Default,,0000,0000,0000,,Pero muchas\Nde las ciencias sociales, Dialogue: 0,0:06:26.92,0:06:28.45,Default,,0000,0000,0000,,muchas\Nde las aplicaciones económicas, Dialogue: 0,0:06:28.45,0:06:29.61,Default,,0000,0000,0000,,en realidad sabemos mucho Dialogue: 0,0:06:29.61,0:06:32.07,Default,,0000,0000,0000,,sobre la relación\Nentre sus variables. Dialogue: 0,0:06:32.07,0:06:34.57,Default,,0000,0000,0000,,Muchas de las relaciones\Nson estrictamente monótonas. Dialogue: 0,0:06:35.40,0:06:39.27,Default,,0000,0000,0000,,La educación va a aumentar\Nlos ingresos de la gente, Dialogue: 0,0:06:39.27,0:06:41.92,Default,,0000,0000,0000,,sin importar\Nlas características demográficas, Dialogue: 0,0:06:41.92,0:06:44.76,Default,,0000,0000,0000,,sin importar\Nel nivel de educación que se tenga. Dialogue: 0,0:06:44.76,0:06:46.32,Default,,0000,0000,0000,,- Hasta que lleguen a un doctorado. Dialogue: 0,0:06:46.32,0:06:48.13,Default,,0000,0000,0000,,- ¿Eso se aplica\Na la escuela de posgrado? Dialogue: 0,0:06:48.13,0:06:49.22,Default,,0000,0000,0000,,[risas] Dialogue: 0,0:06:49.22,0:06:50.59,Default,,0000,0000,0000,,- En un rango razonable. Dialogue: 0,0:06:50.59,0:06:55.47,Default,,0000,0000,0000,,No va a bajar mucho. Dialogue: 0,0:06:55.47,0:06:58.18,Default,,0000,0000,0000,,En muchos de los entornos\Nen los que se destacan Dialogue: 0,0:06:58.18,0:07:00.21,Default,,0000,0000,0000,,estos métodos\Nde aprendizaje automático, Dialogue: 0,0:07:00.21,0:07:02.08,Default,,0000,0000,0000,,hay mucha falta de monotonicidad, Dialogue: 0,0:07:02.08,0:07:04.60,Default,,0000,0000,0000,,una especie de multimodalidad\Nen estas relaciones Dialogue: 0,0:07:04.60,0:07:08.48,Default,,0000,0000,0000,,y van a ser muy poderosos. Dialogue: 0,0:07:08.70,0:07:11.43,Default,,0000,0000,0000,,Pero sigo sosteniendo lo mismo. Dialogue: 0,0:07:11.43,0:07:17.53,Default,,0000,0000,0000,,Estos métodos tienen mucho\Npara ofrecerles a los economistas Dialogue: 0,0:07:17.53,0:07:21.46,Default,,0000,0000,0000,,y serán una gran parte del futuro. Dialogue: 0,0:07:21.63,0:07:23.18,Default,,0000,0000,0000,,APLICACIONES\NDEL APRENDIZAJE AUTOMÁTICO Dialogue: 0,0:07:23.18,0:07:24.81,Default,,0000,0000,0000,,Parece que hay\Nalgo interesante por decir Dialogue: 0,0:07:24.81,0:07:26.14,Default,,0000,0000,0000,,sobre el aprendizaje automático. Dialogue: 0,0:07:26.14,0:07:27.41,Default,,0000,0000,0000,,Así que, Guido, me preguntaba Dialogue: 0,0:07:27.41,0:07:29.42,Default,,0000,0000,0000,,¿podría dar tal vez\Nalgunos de los ejemplos Dialogue: 0,0:07:29.42,0:07:30.69,Default,,0000,0000,0000,,que está pensando Dialogue: 0,0:07:30.69,0:07:32.51,Default,,0000,0000,0000,,con las aplicaciones\Nque salen en el momento? Dialogue: 0,0:07:32.51,0:07:35.78,Default,,0000,0000,0000,,- Un área\Nes donde en lugar de buscar Dialogue: 0,0:07:35.78,0:07:37.24,Default,,0000,0000,0000,,efectos causales promedio Dialogue: 0,0:07:37.24,0:07:39.68,Default,,0000,0000,0000,,estamos buscando\Nestimaciones individualizadas, Dialogue: 0,0:07:39.68,0:07:43.21,Default,,0000,0000,0000,,predicciones de efectos causales, Dialogue: 0,0:07:43.21,0:07:45.86,Default,,0000,0000,0000,,y allí, los algoritmos\Nde aprendizaje automático Dialogue: 0,0:07:45.86,0:07:47.38,Default,,0000,0000,0000,,han sido muy eficaces. Dialogue: 0,0:07:47.96,0:07:49.89,Default,,0000,0000,0000,,Hasta ahora,\Nhemos hecho estas cosas Dialogue: 0,0:07:49.89,0:07:51.46,Default,,0000,0000,0000,,utilizando métodos de kernel, Dialogue: 0,0:07:51.46,0:07:53.85,Default,,0000,0000,0000,,y teóricamente, funcionan muy bien, Dialogue: 0,0:07:53.85,0:07:56.23,Default,,0000,0000,0000,,y hay quienes comentan\Nque, formalmente, Dialogue: 0,0:07:56.23,0:07:57.58,Default,,0000,0000,0000,,no se puede hacer nada mejor. Dialogue: 0,0:07:57.58,0:07:59.42,Default,,0000,0000,0000,,Pero en la práctica,\Nno funcionan muy bien. Dialogue: 0,0:07:59.64,0:08:03.06,Default,,0000,0000,0000,,Las cosas aleatorias\Nde tipo bosque causal Dialogue: 0,0:08:03.06,0:08:05.83,Default,,0000,0000,0000,,en las que Stefan Wager\Ny Susan Athey Dialogue: 0,0:08:05.83,0:08:09.31,Default,,0000,0000,0000,,han estado trabajando\Nse utilizan muy ampliamente. Dialogue: 0,0:08:09.54,0:08:11.90,Default,,0000,0000,0000,,Han sido muy eficaces\Nen estos entornos Dialogue: 0,0:08:11.90,0:08:14.100,Default,,0000,0000,0000,,para obtener efectos causales Dialogue: 0,0:08:14.100,0:08:19.12,Default,,0000,0000,0000,,que varían según las covariables. Dialogue: 0,0:08:19.12,0:08:23.66,Default,,0000,0000,0000,,Creo que esto es solo el comienzo\Nde estos métodos. Dialogue: 0,0:08:23.66,0:08:25.60,Default,,0000,0000,0000,,Pero en muchos casos, Dialogue: 0,0:08:27.20,0:08:29.57,Default,,0000,0000,0000,,estos algoritmos son muy eficaces, Dialogue: 0,0:08:29.57,0:08:31.48,Default,,0000,0000,0000,,como en la búsqueda\Nen grandes espacios Dialogue: 0,0:08:31.48,0:08:36.91,Default,,0000,0000,0000,,y encontrar las funciones\Nque se ajustan muy bien Dialogue: 0,0:08:36.91,0:08:40.44,Default,,0000,0000,0000,,en formas que realmente\Nno podíamos hacer antes. Dialogue: 0,0:08:41.51,0:08:42.87,Default,,0000,0000,0000,,- No conozco ningún ejemplo Dialogue: 0,0:08:42.87,0:08:45.38,Default,,0000,0000,0000,,en el que el aprendizaje automático\Nhaya generado conocimientos Dialogue: 0,0:08:45.38,0:08:47.26,Default,,0000,0000,0000,,sobre un efecto causal\Nque me interese. Dialogue: 0,0:08:47.62,0:08:49.13,Default,,0000,0000,0000,,Y sí conozco ejemplos Dialogue: 0,0:08:49.13,0:08:51.11,Default,,0000,0000,0000,,en los que es potencialmente\Nmuy engañoso. Dialogue: 0,0:08:51.48,0:08:53.49,Default,,0000,0000,0000,,He trabajado con Brigham Frandsen Dialogue: 0,0:08:53.49,0:08:55.92,Default,,0000,0000,0000,,utilizando, por ejemplo,\Nbosques aleatorios Dialogue: 0,0:08:55.92,0:08:57.94,Default,,0000,0000,0000,,para modelar\Nlos efectos de las covariables Dialogue: 0,0:08:57.94,0:08:59.78,Default,,0000,0000,0000,,en un problema\Nde variables instrumentales Dialogue: 0,0:08:59.78,0:09:03.33,Default,,0000,0000,0000,,en el que hay que condicionar\Nlas covariables.