0:00:03.185,0:00:07.578 ♪ [música] ♪ 0:00:09.240,0:00:10.912 [Josh] Bienvenidos nuevamente. 0:00:10.912,0:00:14.405 Hoy continuaremos con la búsqueda[br]del conocimiento causal. 0:00:14.405,0:00:18.486 Recordemos que los graduados[br]de universidades privadas ganan 14 % más 0:00:18.486,0:00:22.396 en promedio que los graduados[br]de universidades públicas. 0:00:22.924,0:00:25.894 ¿Acaso eso significa [br]que la educación privada 0:00:25.894,0:00:27.761 causa que sus salarios suban? 0:00:28.223,0:00:30.763 Como con la mayoría [br]de las preguntas que proponemos, 0:00:30.763,0:00:33.060 los hechos no son cuestionables, 0:00:33.060,0:00:35.923 pero sí la interpretación de ellos. 0:00:36.778,0:00:39.365 [Narrador] Comparemos a los graduados[br]de escuelas privadas 0:00:39.365,0:00:41.856 con los de las escuelas públicas. 0:00:42.724,0:00:46.119 Los graduados de universidades privadas[br]difieren de distintas maneras. 0:00:46.323,0:00:49.656 Por ejemplo, tienen[br]mejores puntajes en el SAT. 0:00:50.110,0:00:55.066 En promedio, estudiantes de universidades [br]privadas tienen 120 puntos más. 0:00:55.702,0:00:59.844 Estas estrellas del SAT[br]usan sudaderas naranjas. 0:01:00.568,0:01:04.346 Los graduados de universidades privadas[br]provienen de familias más ricas, 0:01:04.346,0:01:07.875 13 % más ricas que las familias[br]de estudiantes de universidades públicas. 0:01:08.231,0:01:10.801 Los niños ricos tienen pantalones verdes. 0:01:11.232,0:01:14.102 Pareciera que las comparaciones[br]públicas/privadas 0:01:14.102,0:01:16.243 no son equiparables. 0:01:16.243,0:01:19.385 Tal vez, el aumento[br]del 14 % salarial es el resultado 0:01:19.385,0:01:22.376 de diferencias pre-existentes[br]en el salario potencial 0:01:22.594,0:01:25.525 y no por asistir[br]a una universidad privada. 0:01:26.031,0:01:27.989 Igual que muchos que han estado[br]antes que nosotros 0:01:27.989,0:01:29.753 en búsqueda del conocimiento causal, 0:01:29.753,0:01:32.454 nosotros estamos varados[br]en el sesgo de selección. 0:01:33.112,0:01:35.549 [Narrador] El sesgo de selección hace 0:01:35.549,0:01:40.130 que interpretemos las comparaciones[br]no ajustadas como efectos causales. 0:01:40.130,0:01:41.333 [susurro] Ven conmigo. 0:01:41.333,0:01:44.447 [Narrador] Aquí vemos [br]el sesgo de selección engañándonos 0:01:44.447,0:01:46.275 al dirigir el tráfico. 0:01:46.275,0:01:49.012 Los que tienen mejores notas[br]van a la izquierda 0:01:49.012,0:01:51.314 a las universidades privadas. 0:01:51.314,0:01:54.865 Aquellos con ingresos familiares bajos[br]van hacia la derecha 0:01:55.351,0:01:57.723 a las universidades públicas. 0:01:58.128,0:02:00.840 Las comparaciones públicas/privadas[br]tienen fuerza causal 0:02:00.840,0:02:05.910 solo cuando los grupos comparados[br]son idénticos en promedio. 0:02:06.356,0:02:10.176 Entonces, podemos felizmente[br]decir: "ceteris paribus", 0:02:10.813,0:02:14.543 pero las escuelas privadas[br]son normalmente más selectivas y más caras 0:02:14.574,0:02:16.980 que sus contrapartes públicas. 0:02:17.165,0:02:21.784 Los que van a la izquierda no tienen punto[br]de comparación con los de la derecha. 0:02:22.256,0:02:25.376 Así es como nos embruja[br]el sesgo de selección. 0:02:26.419,0:02:29.944 Aunque las universidades[br]realmente sí seleccionan a los aspirantes, 0:02:29.944,0:02:34.110 el término "sesgo de selección"[br]se refiere a cualquier comparación 0:02:34.110,0:02:36.779 plagad de diferencias sistemáticas[br]entre grupos 0:02:36.779,0:02:39.410 y no a las diferencias[br]en las que estamos enfocados. 0:02:40.100,0:02:42.947 Cuando los grupos que se comparan[br]difieren de muchas formas, 0:02:42.947,0:02:44.995 hemos perdido ceteris paribus. 0:02:45.543,0:02:48.947 El sesgo de selección es el mayor enemigo[br]de las métricas estudiantiles 0:02:48.947,0:02:51.490 e igualmente en las métricas de maestrías. 0:02:51.490,0:02:54.435 Nuestras cinco armas más importantes[br]para luchar contra de él 0:02:54.435,0:02:57.194 son las Cinco Furiosas de la Econometría. 0:02:57.194,0:02:58.663 [susurro] Las Cinco Furiosas. 0:02:58.665,0:03:01.750 [Josh] El sesgo de selección[br]es engañoso y generalizado 0:03:01.750,0:03:03.965 pero nuestras armas son poderosas 0:03:03.965,0:03:06.553 y no es necesario que los individuos 0:03:06.553,0:03:08.405 a comparar sean idénticos, 0:03:08.499,0:03:11.583 no necesitamos clones virtuales. 0:03:11.930,0:03:14.606 Solo debemos asegurarnos[br]que los grupos a comparar 0:03:14.606,0:03:16.918 sean los mismos en promedio. 0:03:17.728,0:03:21.262 Nuestra arma más poderosa,[br]fuerte y confiable 0:03:21.262,0:03:23.928 es la asignación aleatoria[br]de los miembros del grupo. 0:03:24.620,0:03:27.454 Imagine un experimento secreto[br]en el que los candidatos 0:03:27.454,0:03:29.404 tanto a universidades privadas[br]como a públicas 0:03:29.404,0:03:32.190 son asignados aleatoriamente[br]a una o a otra. 0:03:32.480,0:03:33.813 Parece justo. 0:03:34.203,0:03:36.588 Y, tal vez, aprenderemos[br]algo sobre esto también. 0:03:37.012,0:03:40.398 En pro del interés científico,[br]he propuesto un experimento 0:03:40.398,0:03:43.115 en el MIT donde enseño Econometría. 0:03:43.348,0:03:46.913 Me gustaría reemplazar a nuestro hábil[br]y bien remunerado personal 0:03:46.913,0:03:49.215 de la oficina de admisión[br]por el método de cara o cruz. 0:03:49.215,0:03:51.634 La asignación aleatoria[br]de la admisión universitaria asegura 0:03:51.634,0:03:53.844 que, cuando se hacen[br]comparaciones interuniversitarias, 0:03:53.844,0:03:56.824 ceteris es paribus en promedio. 0:03:56.916,0:04:01.336 Desafortunadamente para la ciencia,[br]todavía no he convencido al MIT 0:04:01.336,0:04:04.237 para reemplazar al personal de admisión[br]por un montón de monedas. 0:04:04.399,0:04:08.391 Como discutiremos más tarde,[br]la asignación aleatoria es casi imposible 0:04:08.417,0:04:11.707 o poco práctica, por lo que debemos buscar 0:04:11.707,0:04:14.837 estrategias baratas y prácticas[br]que tengan el mismo poder 0:04:14.837,0:04:18.827 de inducción ceteris paribus[br]de la asignación aleatoria. 0:04:19.216,0:04:21.316 ¿Kamal, en dónde deberíamos buscar? 0:04:21.316,0:04:22.382 [Kamal] No lo sé. 0:04:22.382,0:04:24.169 Si tan solo pudiéramos controlar... 0:04:24.169,0:04:25.235 Correcto. 0:04:25.235,0:04:26.252 [susurro] ¿Qué? 0:04:26.252,0:04:28.707 Las métricas de las maestrías[br]son controladores obsesivos. 0:04:28.793,0:04:31.089 Implementamos estrategias estadísticas 0:04:31.089,0:04:34.855 que hacen que los grupos que escogen[br]distintos caminos sean similares. 0:04:35.409,0:04:38.158 En vez de solo comparar[br]salarios de alumnos 0:04:38.158,0:04:40.966 de universidades públicas y privadas,[br]buscamos que haya habilidades 0:04:40.966,0:04:43.229 y entornos similares dentro[br]de los grupos de graduados. 0:04:43.554,0:04:46.421 Dentro de estos grupos,[br]hacemos comparaciones 0:04:46.421,0:04:48.496 entre públicas/privadas,[br]pero no entre ellos. 0:04:48.807,0:04:53.200 Esta estrategia nos acerca grandemente[br]hacia ceteris paribus 0:04:53.200,0:04:55.881 y hacia comparaciones que tienen sentido. 0:04:55.881,0:04:57.656 Veamos de nuevo a las Cinco Furiosas. 0:04:57.656,0:04:58.858 [susurro] Las Cinco Furiosas. 0:04:58.858,0:05:01.403 [Josh] Nuestra herramienta principal[br]en la lucha por el control 0:05:01.403,0:05:02.861 es la regresión. 0:05:03.097,0:05:06.100 La regresión es una forma limpia[br]de comparar dos grupos 0:05:06.100,0:05:08.389 mientras que se mantienen[br]muchas diferencias 0:05:08.389,0:05:10.527 entre aquellos que están[br]en los grupos fijos. 0:05:11.015,0:05:13.477 ¿Los estimados de la regresión muestran[br]que vale la pena pagar 0:05:13.477,0:05:15.155 por la educación universitaria privada? 0:05:15.155,0:05:16.169 [Hombre] Buena pregunta. 0:05:16.169,0:05:19.169 [Narrador] El uso de la regresión [br]para ajustar la habilidad del aspirante 0:05:19.169,0:05:22.044 y el entorno familiar [br]y unas pocas características demográficas 0:05:22.044,0:05:25.728 como raza y sexo, reduce el recargo [br]de la universidad privada 0:05:25.728,0:05:28.288 de un 14 % a un 9 %. 0:05:28.628,0:05:30.905 Un 9 % aún es bastante. 0:05:30.905,0:05:32.037 [Hombre] Eso es legítimo. 0:05:32.037,0:05:34.458 [Narrador] ¿Pero, se mantiene[br]ceteris paribus? 0:05:34.458,0:05:35.788 ¿Camila? 0:05:35.788,0:05:38.642 [Camila] No estoy segura[br]que controlemos todo. 0:05:38.882,0:05:42.199 Tal vez, los estudiantes de universidades [br]privadas son, de cierta forma, 0:05:42.199,0:05:44.901 más ambiciosos o más listos[br]como para que los test no lo detecten. 0:05:44.901,0:05:47.573 Si es así, las comparaciones no son [br]de manzanas con manzanas, 0:05:47.573,0:05:49.710 aún después de hacer[br]los ajustes que mencionas. 0:05:49.710,0:05:51.440 Sí, es preocupante. 0:05:52.190,0:05:55.322 A la posibilidad de que las variables,[br]que hemos ajustado 0:05:55.322,0:05:58.399 usando regresión, no tomen[br]en cuenta las diferencias de grupos 0:05:58.399,0:06:02.471 se le llama sesgo por omisión[br]de variables o SOV. 0:06:02.471,0:06:03.719 [Hombre] Qué mal. 0:06:03.719,0:06:07.030 [Narrador] SOV es sesgo[br]de selección en una regresión. 0:06:07.805,0:06:11.216 Sufrimos de estos efectos[br]cuando la regresión 0:06:11.216,0:06:12.800 no es la que queremos. 0:06:12.879,0:06:16.715 La regresión que queremos,[br]la de nuestros sueños 0:06:16.715,0:06:19.848 tiene más y mejores controles[br]que la que hemos obtenido. 0:06:19.848,0:06:22.809 ¿Cómo podemos controlar algo [br]como la ambición? 0:06:23.150,0:06:25.998 ¿Hay algún índice de ambición? 0:06:26.714,0:06:30.199 No es fácil hacer[br]comparaciones ceteris paribus. 0:06:30.199,0:06:31.904 La regresión es una herramienta; 0:06:31.904,0:06:33.457 no es magia. 0:06:33.657,0:06:37.347 Y, aun así, a veces se logran[br]resultados notables con esta herramienta. 0:06:37.788,0:06:40.520 Los profesores de Maestría[br]en Econometría, Stacy Dale 0:06:40.520,0:06:44.953 y Alan Krueger, se han enfrentado al reto[br]del sesgo de selección y SOV. 0:06:45.556,0:06:48.331 En un famoso estudio académico[br]Dale y Krueger controlaron 0:06:48.331,0:06:51.701 diversas diferencias posibles[br]entre estudiantes que fueron 0:06:51.701,0:06:53.562 a distintos tipos de universidades. 0:06:53.562,0:06:57.339 Tenían la noción de que el sesgo[br]de selección en este contexto origina 0:06:57.339,0:07:00.088 dos fuerzas: la ambición estudiantil 0:07:00.331,0:07:02.578 y la oportunidad[br]de ingresar a la universidad. 0:07:02.578,0:07:05.732 La mayoría de los estudiantes están[br]conscientes de sus propias aptitudes, 0:07:05.732,0:07:08.366 inclinaciones y motivaciones[br]para el trabajo universitario. 0:07:08.876,0:07:12.918 Estas fuerzas se resumen por el tipo[br]de universidades a las que aplican. 0:07:13.555,0:07:16.995 Al mismo tiempo, el personal[br]de admisión de las universidades invierten 0:07:16.995,0:07:19.429 cientos de horas y energía[br]en tratar de determinar 0:07:19.429,0:07:21.568 quién triunfará en el campus. 0:07:21.568,0:07:26.803 Evalúan y seleccionan usando la habilidad[br]académica y el compromiso universitario. 0:07:27.262,0:07:28.915 ¿Y si comparamos los resultados 0:07:28.915,0:07:32.448 de aquellos que tuvieron las mismas[br]aprobaciones o rechazos? 0:07:32.701,0:07:36.185 Comparemos dos estudiantes[br]de secundaria Maya y Mariana. 0:07:36.185,0:07:39.720 Ambas admitidas a la UNC[br]y Duke, pero no en Yale, 0:07:40.201,0:07:43.650 calificadas en forma similar[br]en cuanto a sus ambiciones y capacidad 0:07:43.650,0:07:46.157 por las oficinas de admisión[br]de estas tres universidades. 0:07:46.157,0:07:49.104 Maya opta por ir a Duke[br]porque su amiga va a ir allí, 0:07:49.138,0:07:52.137 mientras que Mariana va[br]a la UNC en Chapel Hill. 0:07:52.137,0:07:53.452 [Mujer] ¡Vamos! 0:07:53.452,0:07:56.148 [Josh] Maya y Mariana[br]no son clones por supuesto 0:07:56.148,0:07:59.781 y han escogido diferentes universidades[br]por razones personales, 0:07:59.790,0:08:02.545 pero, por otra parte, [br]tienen mucho en común. 0:08:02.545,0:08:06.446 Los factores personales que conducen[br]a que escojan entre una u otra universidad 0:08:06.446,0:08:08.808 pudieran no estar muy relacionados 0:08:08.808,0:08:10.813 con sus salarios futuros. 0:08:10.813,0:08:14.614 Juntar tantas comparaciones[br]nos acercan muchísimo más 0:08:14.614,0:08:16.184 a ceteris paribus. 0:08:16.753,0:08:20.932 Notablemente, un modelo de regresión[br]que controla los grupos de universidades 0:08:20.932,0:08:23.631 a las que han aplicado[br]y aprobado los estudiantes 0:08:23.631,0:08:26.399 muestra que casi no hay[br]diferencia entre los ingresos 0:08:26.399,0:08:28.596 de los graduados[br]de universidades públicas o privadas. 0:08:28.596,0:08:31.220 En otras palabras, [br]al promediar muchos casos 0:08:31.220,0:08:33.627 como los de Maya y Mariana, 0:08:34.067,0:08:37.338 el recargo de universidades privadas[br]cae a cero. 0:08:38.936,0:08:42.774 Maya, tal vez, disfrutó[br]su educación cara en Duke, 0:08:42.774,0:08:46.914 pero en promedio, estudiantes[br]como ella no ganarán más 0:08:46.914,0:08:50.170 en el mercado laboral que otros [br]de universidades públicas comparables. 0:08:50.649,0:08:54.390 Ese es un tremendo cambio en nuestra [br]diferencia salarial de 14 % 0:08:54.390,0:08:56.935 que favorece a los graduados[br]de las universidades élite. 0:08:57.014,0:09:00.856 La regresión tiene el poder de volver[br]una oscura noche estadística 0:09:00.856,0:09:03.083 en un claro día causal. 0:09:03.907,0:09:06.782 Pero necesitarás saber un poco más[br]antes de poder realizar la regresión 0:09:06.782,0:09:08.834 con habilidad y confianza. 0:09:10.412,0:09:14.264 [Narrador] Estás en camino[br]de dominar la Econometría. 0:09:14.264,0:09:18.411 Asegúrate de haber aprendido del video,[br]respondiendo a las preguntas de práctica. 0:09:18.563,0:09:21.942 O, si estás listo, [br]haz clic en el siguiente video. 0:09:22.272,0:09:24.992 También puedes visitar el sitio web de MRU 0:09:24.992,0:09:28.060 para ver más cursos, recursos[br]de enseñanza y mucho más. 0:09:28.476,0:09:32.381 ♪ [música] ♪