0:00:06.267,0:00:08.800 ตอนนี้เรามีรังสีตัวหนึ่งตรงนี้ ที่เริ่มจากจุด A และลากผ่านจุด B แล้วเรา 0:00:09.467,0:00:12.933 เรียกรังสีนี้ว่ (เราเรียกมัน, ขอผมวาดมันให้ตรงหน่อยน) เราเรียกนี่ว่ารังสี AB. รังสี AB 0:00:16.333,0:00:18.867 เริ่มที่จุด A หรือที่มีจุดยอดที่ A แล้วก็มีรังสี AC โดยที่จุด C นั่งรออยู่ 0:00:21.333,0:00:25.600 ตรงนั้นและผมก็ลากรังสีอีกตัวไปยังจุด C ดังนั้นตรงนี้เป็นรังสี AC และที่น่าสนใจ 0:00:32.200,0:00:35.733 ของรังสีสองเส้นนี้คือ มันมีจุดยอดเดียวกัน มันมีจุดยอดเดียวกันที่ A 0:00:40.467,0:00:43.600 และโดยปกติแล้ว ถ้ามีรังสี 2 เส้นที่ใช้จุดยอดเดียวกัน เราจะมีมุม 0:00:47.467,0:00:50.600 คุณอาจ, คุณอาจคุ้นเคยกับหลักการเรื่องมุมมาพอสมควร ซึ่งผมคิดว่า 0:00:53.133,0:00:55.800 angle มาจากภาษาละตินหมายถึงมุม, ซึ่งก็เข้าใจได้ นี่ดูเหมือนมุมตรงนั้น 0:00:58.200,0:01:00.600 เราเห็นได้ที่จุด A และ, แต่นิยามทางเรขาคณิต, หรืออันที่คุณมักเห็น 0:01:04.267,0:01:07.667 คือเมื่อรังสีสองตัวมีจุดยอดร่วมกัน. และจุดยอดร่วมนั่นเรียกว่าจุดยอดของมุม 0:01:12.667,0:01:16.533 แล้ว A คือจุดยอด. มันไม่ใช่แค่จุดยอดของรังสีแต่ละตัว, คือรังสี AB กับรังสี AC, มันยังเป็นจุดยอด, จุดยอด 0:01:19.933,0:01:24.667 ของมุม. แล้วสิ่งที่ต่อไปที่ผมอยากคิดถึง คือวิธีที่เราระบุ, เราจะระบุมุมอย่างไร 0:01:28.467,0:01:31.333 คุณอาจอยากระบุโดยโดยเขีนมันว่ามุม A เฉยๆ, แต่ผมจะแสดงให้คุณเห็นในไม่ช้าว่า ทำไมมันถึงไม่ใช่ 0:01:35.600,0:01:39.800 ชัดเจนพอ หากจะระบุตามที่, ที่ที่มุมนั้นนั่งอยู่. แล้ววิธีที่คุณระบุ 0:01:42.267,0:01:46.600 มุม, หวังว่านี่คงสมเหตุสมผลในไม่ช้า, คือว่าคุณบอกว่ามุม (นี่คือสัญลักษณ์ 0:01:52.733,0:01:58.200 แทนมุม) และมันดูคล้ายกับมุมนี่ตรงนี้มาก, แต่สิ่งที่ชี้นิดๆ 0:02:00.933,0:02:05.333 เกือบเหมือนกับเครื่องหมายน้อยกว่า, แต่มันไม่ใช่สักทีเดียว. มันราบตรงด้านขวาตรงนี้ 0:02:07.800,0:02:09.800 นี่คือสัญลักษณ์แทนมุม, คุณก็บอกว่ามุม BAC, BAC หรือคุณบอกว่า มุม CAB, หรือ มุม CAB 0:02:10.600,0:02:13.133 ไม่ว่าแบบไหน มันหมายถึงมุมนี้, หรือบางครั้งคุณมองมันเป็นมุมเปิด 0:02:15.467,0:02:16.933 นี่ตรงนี้, และสิ่งสำคัญที่ต้องรู้ไว้คือว่า คุณมีจุดยอดอยู่ตรงกลางของ 0:02:19.867,0:02:21.467 ตัวอักษร. และคุณอาจบอกถึงสาเหตุที่ต้องเขียนตัวอักษณเหล่านั้นทั้ง 3 ตัว, ทำไม 0:02:24.200,0:02:27.133 ไม่เขียนมุมว่า A เฉยๆ, เพื่อให้เข้าใจ, ขอผมแสดงให้คุณดูแผนภาพอีกอัน. และแม้ว่าจะมีนิยาม 0:02:27.133,0:02:36.600 ทางเรขาคณิตมาเกี่ยวข้อง, รังสีสองตัวที่มีจุดยอดเหมือนกัน 0:02:36.600,0:02:39.667 ในทางปฏิบัติแล้ว, คุณจะได้เห็นมุมหลายมุม 0:02:39.667,0:02:50.467 เกิดขึ้นเส้นตรงและส่วนของเส้นตรง 0:02:50.467,0:02:54.267 สมมุติว่าผมมีส่วนของเส้นตรงแบบนั้น, ขอมผเขียน 0:02:54.267,0:03:07.800 มันว่า DE, และมีส่วนของเส้นตรงอีกตัว, FG 0:03:07.800,0:03:15.000 และสมมุติว่าจุดที่ส่วนของเส้นตรงสองตัวตัดกัน 0:03:15.000,0:03:20.533 คือ H, แล้วเราจะระบุมุมนี่ตรงนี้ได้อย่างไร 0:03:20.533,0:03:27.800 เราเรียกมันว่ามุม H ได้ไหม, ถ้าเราเรียกมันว่ามุม H, 0:03:27.800,0:03:45.000 มันอาจเป็นมุมนี้, มุมนั้น, หรือมุมนี่ตรงนี้ 0:03:45.000,0:03:49.467 มันอาจเป็นมุมนี่ตรงนี้. วิธีเดียวในการระบุ 0:03:49.467,0:03:54.867 ซึ่งเราบอกได้ ถ้าใช้อักษร 3 ตัว 0:03:54.867,0:04:01.467 ถ้าคุณอยากพูดถึงมุมนี้, คุณจะเรียกมันว่า 0:04:01.467,0:04:12.400 มุม EHG, หรือเราเรียกมันว่ามุม GHE, 0:04:12.400,0:04:18.933 ถ้าคุณอยากได้มุมนี่ตรงนี้, คุณก็เรียกมัน 0:04:18.933,0:04:40.867 ว่ามุม DHG, หรือมุม GHD. ผมว่าคุณคงเข้าใจ 0:04:40.867,0:04:45.600 มุมนี้คือมุม FHE หรือ EHF และนี่คือมุม FHD หรือ 0:04:45.600,0:04:54.533 DHF. ตอนนี้มันชัดเจนแล้วว่า มุมที่คุณหมายถึงคือมุมไหน 0:04:54.533,0:04:58.467 ตอนนี้เรามีแนวคิดทั่วไปแล้วว่ามุมคืออะไร และ 0:04:58.467,0:05:02.933 เราระบุมันได้ด้วยสัญลักษณ์, มันไม่ดูเหมือนว่า 0:05:02.933,0:05:13.267 มุมทั้งหมดเหมือนกัน. บางตัวกางมากกว่าตัวอื่น 0:05:13.267,0:05:19.133 ตัวอย่างเช่น, ลองดูมุมสองมุมตรงนี้, 0:05:19.133,0:05:58.933 มุม BAC, และสมมุติว่าตรงนี้, ผมมีมุม XYZ 0:05:58.933,0:06:06.333 เมื่อคุณดูที่มุมพวกนี้ XYZ เปิดมากกว่า 0:06:06.333,0:06:15.800 ในขณะที่มุมนี้ปิดกว่า, เทียบกับมุมอื่น 0:06:15.800,0:06:22.267 เมื่อเราวัดมุม, เราต้องวัดมันว่าพวกมัน 0:06:22.267,0:06:32.000 เปิดหรือปิดแค่ไหน. ค่าวัดมุม XYZ, นั้น 0:06:32.000,0:06:38.133 มากกว่าค่าวัดมุม ABC 0:06:38.133,0:06:44.533 ค่าวัดมุมใดๆ, มาจากว่าพวกมันเปิดหรือปิด 0:00:35.733,0:06:38.133 แค่ไหน ซึ่งเราจะเห็นในวิดีโอต่อๆ ไป