[Script Info] Title: [Events] Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text Dialogue: 0,0:00:00.97,0:00:04.27,Default,,0000,0000,0000,,我下面来讲另一种求3×3矩阵的逆矩阵的方法 Dialogue: 0,0:00:04.27,0:00:07.15,Default,,0000,0000,0000,,我更喜欢这种方法,觉得更有趣些 Dialogue: 0,0:00:07.15,0:00:09.19,Default,,0000,0000,0000,,而且不那么容易犯错 Dialogue: 0,0:00:09.19,0:00:11.27,Default,,0000,0000,0000,,但是,如果我没记错的话 Dialogue: 0,0:00:11.27,0:00:12.98,Default,,0000,0000,0000,,《代数2》好像不教这个内容 Dialogue: 0,0:00:12.98,0:00:15.23,Default,,0000,0000,0000,,这也是为什么我先讲前面那个方法 Dialogue: 0,0:00:15.23,0:00:17.06,Default,,0000,0000,0000,,我们先来过一遍新方法 Dialogue: 0,0:00:17.06,0:00:20.09,Default,,0000,0000,0000,,以后的视频里,我会解释这个方法的道理 Dialogue: 0,0:00:20.09,0:00:21.91,Default,,0000,0000,0000,,知其所以然是很重要的 Dialogue: 0,0:00:21.91,0:00:24.02,Default,,0000,0000,0000,,但在线性代数里,有那么几个知识点 Dialogue: 0,0:00:24.02,0:00:25.83,Default,,0000,0000,0000,,最好先掌握怎么操作 Dialogue: 0,0:00:25.84,0:00:27.59,Default,,0000,0000,0000,,我认为这是其中之一 Dialogue: 0,0:00:27.59,0:00:29.34,Default,,0000,0000,0000,,之后我们再来讲为什么 Dialogue: 0,0:00:29.34,0:00:31.84,Default,,0000,0000,0000,,因为,“怎么操作”是个很机械的过程 Dialogue: 0,0:00:31.84,0:00:34.07,Default,,0000,0000,0000,,只涉及一些基础的运算 Dialogue: 0,0:00:34.34,0:00:39.14,Default,,0000,0000,0000,,而“为什么”则更加深入 Dialogue: 0,0:00:39.14,0:00:41.43,Default,,0000,0000,0000,,所以我把它留到以后来讲 Dialogue: 0,0:00:41.43,0:00:44.22,Default,,0000,0000,0000,,通常,当你掌握了“怎么操作”时 Dialogue: 0,0:00:44.22,0:00:46.80,Default,,0000,0000,0000,,也就有信心进行更深入的思考了 Dialogue: 0,0:00:46.80,0:00:49.57,Default,,0000,0000,0000,,言归正传,我们来看原矩阵 Dialogue: 0,0:00:50.13,0:00:52.66,Default,,0000,0000,0000,,上段视频里的原矩阵是多少来着? Dialogue: 0,0:00:52.66,0:01:03.98,Default,,0000,0000,0000,,它是1, 0, 1, 0, 2, 1, 1, 1, 1 Dialogue: 0,0:01:04.41,0:01:06.84,Default,,0000,0000,0000,,要求它的逆矩阵 Dialogue: 0,0:01:07.25,0:01:10.16,Default,,0000,0000,0000,,我们介绍新的求逆方法,名叫: Dialogue: 0,0:01:10.16,0:01:13.75,Default,,0000,0000,0000,,高斯-若当消元法 Dialogue: 0,0:01:13.95,0:01:17.83,Default,,0000,0000,0000,,整个过程看起来就像是魔法一样 Dialogue: 0,0:01:17.83,0:01:20.37,Default,,0000,0000,0000,,以后的视频里会有更详细的解释 Dialogue: 0,0:01:20.37,0:01:22.43,Default,,0000,0000,0000,,我们先来“扩增”(augment)这个矩阵 Dialogue: 0,0:01:22.43,0:01:23.98,Default,,0000,0000,0000,,什么叫“扩增”(augment)? Dialogue: 0,0:01:23.98,0:01:27.05,Default,,0000,0000,0000,,就是给它加上些东西(这里就是在原函数右边写上单位矩阵) Dialogue: 0,0:01:27.05,0:01:31.52,Default,,0000,0000,0000,,我习惯画一条分隔线;有些人不画,也是可以的 Dialogue: 0,0:01:31.56,0:01:37.73,Default,,0000,0000,0000,,在分隔线的另一边,我写上同样大小的单位矩阵 Dialogue: 0,0:01:37.73,0:01:41.32,Default,,0000,0000,0000,,这里是3×3矩阵,所以写上3×3的单位矩阵 Dialogue: 0,0:01:41.32,0:01:50.45,Default,,0000,0000,0000,,即1, 0, 0, 0, 1, 0, 0, 0, 1 Dialogue: 0,0:01:51.74,0:01:54.51,Default,,0000,0000,0000,,好了,接下来做什么呢? Dialogue: 0,0:01:55.35,0:01:59.65,Default,,0000,0000,0000,,我会进行一系列“基本行运算”(elementary row operation) Dialogue: 0,0:01:59.65,0:02:04.46,Default,,0000,0000,0000,,我呆会儿再教你什么叫做“基本行运算” Dialogue: 0,0:02:04.57,0:02:07.24,Default,,0000,0000,0000,,但是无论我对左边矩阵的做什么操作 Dialogue: 0,0:02:07.24,0:02:09.62,Default,,0000,0000,0000,,我都要对右边的相应行做同样的运算 Dialogue: 0,0:02:09.62,0:02:14.21,Default,,0000,0000,0000,,我的目标是:对左边矩阵进行一系列的运算 Dialogue: 0,0:02:14.21,0:02:17.23,Default,,0000,0000,0000,,当然也对右边矩阵进行同样的操作 Dialogue: 0,0:02:17.23,0:02:21.56,Default,,0000,0000,0000,,使得左边的矩阵,最终变成单位矩阵 Dialogue: 0,0:02:21.67,0:02:24.37,Default,,0000,0000,0000,,而当左边变成单位矩阵的时候 Dialogue: 0,0:02:24.37,0:02:28.80,Default,,0000,0000,0000,,右边的矩阵,就会变成左边原矩阵的逆矩阵 Dialogue: 0,0:02:28.80,0:02:31.53,Default,,0000,0000,0000,,当左边变成单位矩阵的时候 Dialogue: 0,0:02:31.53,0:02:35.01,Default,,0000,0000,0000,,我们会管它叫“简式行阶梯形”(reduced row echelon form) Dialogue: 0,0:02:35.01,0:02:36.75,Default,,0000,0000,0000,,后面会有专门的视频来讲这个 Dialogue: 0,0:02:36.75,0:02:39.16,Default,,0000,0000,0000,,线性代数里有很多术语和定义 Dialogue: 0,0:02:39.16,0:02:41.71,Default,,0000,0000,0000,,但它们实际上都是很简单的概念 Dialogue: 0,0:02:41.71,0:02:43.55,Default,,0000,0000,0000,,先不扯远了,我们动手计算 Dialogue: 0,0:02:43.55,0:02:45.51,Default,,0000,0000,0000,,算完后你们就会更清楚些 Dialogue: 0,0:02:45.51,0:02:47.44,Default,,0000,0000,0000,,至少会清楚计算过程 Dialogue: 0,0:02:47.44,0:02:49.67,Default,,0000,0000,0000,,虽然可能还无法理解道理何在 Dialogue: 0,0:02:49.67,0:02:51.01,Default,,0000,0000,0000,,我说过我们要进行一系列运算 Dialogue: 0,0:02:51.01,0:02:52.61,Default,,0000,0000,0000,,所以首先,我们先要弄明白: Dialogue: 0,0:02:52.61,0:02:54.63,Default,,0000,0000,0000,,什么样的运算是合法的? Dialogue: 0,0:02:54.63,0:02:55.88,Default,,0000,0000,0000,,也就是“基本行运算” Dialogue: 0,0:02:55.88,0:02:57.80,Default,,0000,0000,0000,,合法的运算包括下面这些: Dialogue: 0,0:02:58.17,0:03:03.70,Default,,0000,0000,0000,,我可以拿某一行,乘上一个倍数 Dialogue: 0,0:03:03.76,0:03:05.13,Default,,0000,0000,0000,,这是可以的 Dialogue: 0,0:03:05.38,0:03:07.95,Default,,0000,0000,0000,,我可以交换任意两行的位置 Dialogue: 0,0:03:07.95,0:03:10.57,Default,,0000,0000,0000,,当然,如果我在左边交换第一和第二行 Dialogue: 0,0:03:10.57,0:03:12.78,Default,,0000,0000,0000,,我也必须在右边做同样的操作 Dialogue: 0,0:03:12.78,0:03:16.94,Default,,0000,0000,0000,,我还可以拿某一行加上或减去另一行 Dialogue: 0,0:03:16.94,0:03:20.56,Default,,0000,0000,0000,,比如说,我可以拿第三行,加上第二行 Dialogue: 0,0:03:20.56,0:03:23.62,Default,,0000,0000,0000,,所以第三行的数字就变成它们的和 Dialogue: 0,0:03:23.62,0:03:25.74,Default,,0000,0000,0000,,等下你们就明白这是什么意思了 Dialogue: 0,0:03:25.74,0:03:27.76,Default,,0000,0000,0000,,而且,这些运算可以组合起来 Dialogue: 0,0:03:27.76,0:03:30.40,Default,,0000,0000,0000,,比如说,拿第二行乘以负1 Dialogue: 0,0:03:30.40,0:03:33.15,Default,,0000,0000,0000,,然后把结果加到第三行上 Dialogue: 0,0:03:33.56,0:03:40.90,Default,,0000,0000,0000,,你可能觉得这挺像在解线性方程组 Dialogue: 0,0:03:41.00,0:03:43.64,Default,,0000,0000,0000,,确实如此,因为矩阵就是一个 Dialogue: 0,0:03:43.64,0:03:46.41,Default,,0000,0000,0000,,用来表示方程组的好方法 Dialogue: 0,0:03:46.41,0:03:48.10,Default,,0000,0000,0000,,这一点我以后会给你们解释 Dialogue: 0,0:03:48.15,0:03:51.73,Default,,0000,0000,0000,,回到主题,我们来做点“基本行运算” Dialogue: 0,0:03:51.73,0:03:54.98,Default,,0000,0000,0000,,把左边这个矩阵转化成“简式行阶梯形” Dialogue: 0,0:03:54.98,0:03:58.87,Default,,0000,0000,0000,,其实也就是说“我们把它化成单位矩阵” Dialogue: 0,0:03:59.53,0:04:01.07,Default,,0000,0000,0000,,我们的目标也就是: Dialogue: 0,0:04:01.07,0:04:03.13,Default,,0000,0000,0000,,得让这一条对角线上全变成1 Dialogue: 0,0:04:03.13,0:04:04.58,Default,,0000,0000,0000,,剩下的都变成0 Dialogue: 0,0:04:04.58,0:04:07.48,Default,,0000,0000,0000,,我们来看看有没有什么简便的方法 Dialogue: 0,0:04:08.35,0:04:10.67,Default,,0000,0000,0000,,我们把新矩阵写在下面 Dialogue: 0,0:04:10.67,0:04:15.70,Default,,0000,0000,0000,,第一步,我要把左下角的1化成0 Dialogue: 0,0:04:16.14,0:04:17.63,Default,,0000,0000,0000,,看起来很简单 Dialogue: 0,0:04:17.69,0:04:19.84,Default,,0000,0000,0000,,前两行不变,照写下来 Dialogue: 0,0:04:19.84,0:04:20.100,Default,,0000,0000,0000,,1, 0, 1 Dialogue: 0,0:04:21.58,0:04:22.98,Default,,0000,0000,0000,,然后是分隔线 Dialogue: 0,0:04:23.31,0:04:24.68,Default,,0000,0000,0000,,1, 0, 0 Dialogue: 0,0:04:25.04,0:04:27.40,Default,,0000,0000,0000,,第二行也不做任何操作 Dialogue: 0,0:04:27.40,0:04:28.92,Default,,0000,0000,0000,,0, 2, 1 Dialogue: 0,0:04:33.36,0:04:35.76,Default,,0000,0000,0000,,0, 1, 0 Dialogue: 0,0:04:36.70,0:04:39.64,Default,,0000,0000,0000,,我现在的目标,是要拿这一行 Dialogue: 0,0:04:39.64,0:04:43.68,Default,,0000,0000,0000,,把它的第一个数字1,变成0写在这里 Dialogue: 0,0:04:43.68,0:04:47.66,Default,,0000,0000,0000,,这样一来,我们就朝单位矩阵前进了一步 Dialogue: 0,0:04:48.22,0:04:50.05,Default,,0000,0000,0000,,怎么让这里得到0? Dialogue: 0,0:04:50.05,0:04:55.18,Default,,0000,0000,0000,,我可以这么做:拿上面的第三行减去第一行 Dialogue: 0,0:04:55.67,0:04:59.78,Default,,0000,0000,0000,,然后把结果写在新的第三行的位置上 Dialogue: 0,0:05:00.29,0:05:03.89,Default,,0000,0000,0000,,第三行减去第一行,结果是什么? Dialogue: 0,0:05:04.45,0:05:07.05,Default,,0000,0000,0000,,1减去1,得0 Dialogue: 0,0:05:07.67,0:05:10.44,Default,,0000,0000,0000,,1减去0,得1 Dialogue: 0,0:05:11.00,0:05:13.35,Default,,0000,0000,0000,,1减去1,得0 Dialogue: 0,0:05:13.97,0:05:15.95,Default,,0000,0000,0000,,我在左边做了一次减法 Dialogue: 0,0:05:15.95,0:05:17.91,Default,,0000,0000,0000,,也必须在右边做相同的操作 Dialogue: 0,0:05:17.91,0:05:20.23,Default,,0000,0000,0000,,也就是拿第三行减去第一行 Dialogue: 0,0:05:20.23,0:05:23.39,Default,,0000,0000,0000,,即,0减去1,得负1 Dialogue: 0,0:05:23.82,0:05:26.55,Default,,0000,0000,0000,,0减去0,得0 Dialogue: 0,0:05:27.07,0:05:29.48,Default,,0000,0000,0000,,1减去0,得1 Dialogue: 0,0:05:30.04,0:05:30.95,Default,,0000,0000,0000,,很好 Dialogue: 0,0:05:31.23,0:05:32.88,Default,,0000,0000,0000,,接下来怎么办? Dialogue: 0,0:05:33.10,0:05:37.100,Default,,0000,0000,0000,,现在左边的第三行,两边是0,中间是1 Dialogue: 0,0:05:37.100,0:05:41.18,Default,,0000,0000,0000,,很像单位矩阵里的第二行 Dialogue: 0,0:05:41.62,0:05:43.62,Default,,0000,0000,0000,,那何不直接交换这两行呢? Dialogue: 0,0:05:43.62,0:05:45.76,Default,,0000,0000,0000,,直接交换第二行和第三行 Dialogue: 0,0:05:45.76,0:05:47.39,Default,,0000,0000,0000,,我们把它写下来 Dialogue: 0,0:05:47.52,0:05:49.65,Default,,0000,0000,0000,,交换第二行和第三行 Dialogue: 0,0:05:49.72,0:05:52.76,Default,,0000,0000,0000,,第一行不变,还是1, 0, 1 Dialogue: 0,0:05:54.96,0:05:57.54,Default,,0000,0000,0000,,右边的第一行也是一样 Dialogue: 0,0:05:58.12,0:06:01.85,Default,,0000,0000,0000,,现在我们交换第二行和第三行 Dialogue: 0,0:06:01.85,0:06:05.20,Default,,0000,0000,0000,,所以第二行变成:0, 1, 0 Dialogue: 0,0:06:05.20,0:06:07.11,Default,,0000,0000,0000,,右边也同样交换 Dialogue: 0,0:06:07.27,0:06:09.40,Default,,0000,0000,0000,,变成:负1, 0, 1 Dialogue: 0,0:06:09.40,0:06:11.97,Default,,0000,0000,0000,,直接交换两行的位置就行了 Dialogue: 0,0:06:12.61,0:06:15.71,Default,,0000,0000,0000,,所以第三行现在就变成了前面的第二行 Dialogue: 0,0:06:15.71,0:06:17.69,Default,,0000,0000,0000,,0, 2, 1 Dialogue: 0,0:06:18.23,0:06:20.79,Default,,0000,0000,0000,,这边是0, 1, 0 Dialogue: 0,0:06:21.92,0:06:22.76,Default,,0000,0000,0000,,好的 Dialogue: 0,0:06:23.17,0:06:24.72,Default,,0000,0000,0000,,接下来又该怎么办? Dialogue: 0,0:06:24.72,0:06:27.33,Default,,0000,0000,0000,,如果第三行的这个2变成0就好了 Dialogue: 0,0:06:27.33,0:06:30.11,Default,,0000,0000,0000,,这样一来等于朝单位矩阵前进了一大步 Dialogue: 0,0:06:30.41,0:06:32.70,Default,,0000,0000,0000,,我怎么才能把它变成0呢? Dialogue: 0,0:06:32.81,0:06:37.11,Default,,0000,0000,0000,,拿第三行减去2倍的第二行怎么样? Dialogue: 0,0:06:37.28,0:06:40.48,Default,,0000,0000,0000,,2倍的第二行,中间的数就是2 Dialogue: 0,0:06:40.52,0:06:44.71,Default,,0000,0000,0000,,从第三行中减去它,中间就得0 Dialogue: 0,0:06:44.78,0:06:46.44,Default,,0000,0000,0000,,就这么办 Dialogue: 0,0:06:47.72,0:06:51.24,Default,,0000,0000,0000,,第一行,很幸运地,一直不用动 Dialogue: 0,0:06:51.25,0:06:52.77,Default,,0000,0000,0000,,我们照写下来 Dialogue: 0,0:06:52.77,0:06:57.96,Default,,0000,0000,0000,,1, 0, 1, 1, 0, 0 Dialogue: 0,0:06:59.05,0:07:02.24,Default,,0000,0000,0000,,第二行这回也不需要变 Dialogue: 0,0:07:02.24,0:07:05.25,Default,,0000,0000,0000,,右边是:负1, 0, 1 Dialogue: 0,0:07:05.55,0:07:07.28,Default,,0000,0000,0000,,我刚才说要怎么做来着? Dialogue: 0,0:07:07.28,0:07:12.49,Default,,0000,0000,0000,,我要从第三行里减去“2倍的第二行” Dialogue: 0,0:07:13.21,0:07:18.04,Default,,0000,0000,0000,,就是:0,减去“2乘以0”,得0 Dialogue: 0,0:07:18.99,0:07:23.78,Default,,0000,0000,0000,,2,减去“2乘以1”,就是0 Dialogue: 0,0:07:24.50,0:07:28.84,Default,,0000,0000,0000,,1,减去“2乘以0”,得1 Dialogue: 0,0:07:29.18,0:07:43.86,Default,,0000,0000,0000,,0,减去“2乘以负1”,就是0减去负2,得正2 Dialogue: 0,0:07:45.14,0:07:49.51,Default,,0000,0000,0000,,1,减去“2乘以0”,还是等于1 Dialogue: 0,0:07:50.23,0:07:56.24,Default,,0000,0000,0000,,0,减去“2乘以1”,得到负2 Dialogue: 0,0:07:56.81,0:07:58.17,Default,,0000,0000,0000,,我都算对了吗? Dialogue: 0,0:07:58.17,0:07:59.30,Default,,0000,0000,0000,,我来检查下 Dialogue: 0,0:07:59.30,0:08:04.72,Default,,0000,0000,0000,,0减去“2乘以负1”,“2乘以负1”等于负2 Dialogue: 0,0:08:04.98,0:08:06.78,Default,,0000,0000,0000,,0减去负2,所以是正2 Dialogue: 0,0:08:06.78,0:08:08.22,Default,,0000,0000,0000,,好的,快完成了 Dialogue: 0,0:08:08.22,0:08:10.17,Default,,0000,0000,0000,,左边看起来已经很像单位矩阵了 Dialogue: 0,0:08:10.17,0:08:11.76,Default,,0000,0000,0000,,或者说“简式行阶梯形” Dialogue: 0,0:08:11.78,0:08:13.59,Default,,0000,0000,0000,,唯一不同的是右上角的1 Dialogue: 0,0:08:13.59,0:08:16.24,Default,,0000,0000,0000,,所以我们终于要对第一行下手了 Dialogue: 0,0:08:16.79,0:08:18.47,Default,,0000,0000,0000,,我应该怎么做? Dialogue: 0,0:08:18.82,0:08:23.87,Default,,0000,0000,0000,,我从第一行里减去第三行怎么样? Dialogue: 0,0:08:23.87,0:08:26.44,Default,,0000,0000,0000,,因为右上角的1减去右下角的1,就得0 Dialogue: 0,0:08:26.44,0:08:27.87,Default,,0000,0000,0000,,我们把它写下来 Dialogue: 0,0:08:27.94,0:08:31.09,Default,,0000,0000,0000,,从第一行里减去第三行 Dialogue: 0,0:08:31.81,0:08:34.90,Default,,0000,0000,0000,,1减去0,得1 Dialogue: 0,0:08:35.75,0:08:38.44,Default,,0000,0000,0000,,0减去0,得0 Dialogue: 0,0:08:38.60,0:08:41.26,Default,,0000,0000,0000,,1减去1,得0 Dialogue: 0,0:08:41.31,0:08:43.19,Default,,0000,0000,0000,,这就是我们想要的 Dialogue: 0,0:08:43.60,0:08:47.88,Default,,0000,0000,0000,,然后是:1减去2,得负1 Dialogue: 0,0:08:48.36,0:08:52.87,Default,,0000,0000,0000,,0减去1,得负1 Dialogue: 0,0:08:53.66,0:08:57.67,Default,,0000,0000,0000,,0减去负2,就得到正2 Dialogue: 0,0:08:59.36,0:09:01.55,Default,,0000,0000,0000,,其余的两行不变 Dialogue: 0,0:09:02.30,0:09:07.34,Default,,0000,0000,0000,,0, 1, 0, 负1, 0, 1 Dialogue: 0,0:09:08.06,0:09:15.16,Default,,0000,0000,0000,,下面是:0, 0, 1, 2, 1, 负2 Dialogue: 0,0:09:15.99,0:09:17.16,Default,,0000,0000,0000,,大功告成 Dialogue: 0,0:09:17.16,0:09:19.93,Default,,0000,0000,0000,,我们对左边的矩阵做了一系列运算 Dialogue: 0,0:09:19.93,0:09:23.10,Default,,0000,0000,0000,,也对右边的矩阵进行同样的操作 Dialogue: 0,0:09:23.10,0:09:27.48,Default,,0000,0000,0000,,左边的变成了单位矩阵,或者叫“简式行阶梯形” Dialogue: 0,0:09:27.48,0:09:30.22,Default,,0000,0000,0000,,所用的方法叫“高斯-若当消元法” Dialogue: 0,0:09:30.45,0:09:32.18,Default,,0000,0000,0000,,那么右边的这是什么? Dialogue: 0,0:09:32.18,0:09:35.26,Default,,0000,0000,0000,,它就是左边原矩阵的逆矩阵 Dialogue: 0,0:09:36.79,0:09:39.30,Default,,0000,0000,0000,,原矩阵和它相乘,就等于单元矩阵 Dialogue: 0,0:09:39.30,0:09:43.22,Default,,0000,0000,0000,,如果原矩阵叫A的话 Dialogue: 0,0:09:43.93,0:09:45.99,Default,,0000,0000,0000,,那么这个就是“A逆” Dialogue: 0,0:09:46.76,0:09:47.100,Default,,0000,0000,0000,,就这么简单 Dialogue: 0,0:09:47.100,0:09:51.42,Default,,0000,0000,0000,,你们可以看到,这只花了我上次所用时间的一半 Dialogue: 0,0:09:51.45,0:09:53.06,Default,,0000,0000,0000,,而且计算更容易 Dialogue: 0,0:09:53.06,0:09:57.26,Default,,0000,0000,0000,,不用求伴随矩阵、余因子、行列式什么的 Dialogue: 0,0:09:58.25,0:10:01.45,Default,,0000,0000,0000,,为了帮助你们理解,我稍微讲讲这个方法的原理 Dialogue: 0,0:10:01.45,0:10:07.04,Default,,0000,0000,0000,,我对左边这个矩阵所做的每一步操作 Dialogue: 0,0:10:07.04,0:10:10.25,Default,,0000,0000,0000,,都可以视为是对它做了一次矩阵乘法 Dialogue: 0,0:10:10.25,0:10:12.65,Default,,0000,0000,0000,,比如,要从原矩阵,到下面这个矩阵 Dialogue: 0,0:10:12.65,0:10:14.90,Default,,0000,0000,0000,,就好像说,存在某个矩阵 Dialogue: 0,0:10:14.90,0:10:17.96,Default,,0000,0000,0000,,乘以它的效果,就等于做了这第一步的操作 Dialogue: 0,0:10:18.05,0:10:21.87,Default,,0000,0000,0000,,而第二步操作,相当于乘上了另一个矩阵 Dialogue: 0,0:10:21.87,0:10:24.47,Default,,0000,0000,0000,,所以实质上,我们相当于拿原矩阵 Dialogue: 0,0:10:24.47,0:10:27.87,Default,,0000,0000,0000,,乘上一系列的矩阵,最终得到单位矩阵 Dialogue: 0,0:10:27.87,0:10:30.90,Default,,0000,0000,0000,,这一系列矩阵,叫做“消元矩阵”(elinimation matrix) Dialogue: 0,0:10:30.90,0:10:34.35,Default,,0000,0000,0000,,我们把它们相乘,就得到原矩阵的逆矩阵 Dialogue: 0,0:10:34.35,0:10:35.61,Default,,0000,0000,0000,,这是什么意思呢? Dialogue: 0,0:10:35.86,0:10:39.22,Default,,0000,0000,0000,,比如,我们有原矩阵A Dialogue: 0,0:10:40.87,0:10:47.29,Default,,0000,0000,0000,,从A到下面这个矩阵,相当于乘上了一个消元矩阵 Dialogue: 0,0:10:47.34,0:10:50.55,Default,,0000,0000,0000,,要是你们觉得一头雾水,可以完全忽略 Dialogue: 0,0:10:50.55,0:10:53.09,Default,,0000,0000,0000,,但它也可能会有所启发 Dialogue: 0,0:10:53.48,0:10:58.11,Default,,0000,0000,0000,,因为第一步操作消去了元素(3, 1)(第三行第一列) Dialogue: 0,0:10:58.11,0:11:03.27,Default,,0000,0000,0000,,所以我们管这一步对应的消元矩阵叫做E(3,1) Dialogue: 0,0:11:04.02,0:11:07.40,Default,,0000,0000,0000,,而第二步操作,相当于乘上另一个矩阵 Dialogue: 0,0:11:07.40,0:11:09.44,Default,,0000,0000,0000,,以后的视频里,会有更详细的解释 Dialogue: 0,0:11:09.44,0:11:11.73,Default,,0000,0000,0000,,我会教你们如何构造这些消元矩阵 Dialogue: 0,0:11:11.85,0:11:15.57,Default,,0000,0000,0000,,这里的第二步操作,是两行元素交换位置 Dialogue: 0,0:11:15.57,0:11:20.04,Default,,0000,0000,0000,,我们姑且管它对应的矩阵,叫做“交换矩阵”S Dialogue: 0,0:11:20.09,0:11:24.95,Default,,0000,0000,0000,,乘上它,效果是交换第二行和第三行,所以写成S(2, 3) Dialogue: 0,0:11:24.95,0:11:28.18,Default,,0000,0000,0000,,第三步也相当于一次乘法 Dialogue: 0,0:11:28.33,0:11:32.38,Default,,0000,0000,0000,,我们消去了什么?消去了第三行第二列 Dialogue: 0,0:11:32.64,0:11:36.07,Default,,0000,0000,0000,,所以其对应的消元矩阵叫做E(3, 2) Dialogue: 0,0:11:36.53,0:11:40.33,Default,,0000,0000,0000,,最后一步,也相当于乘上了一个消元矩阵 Dialogue: 0,0:11:40.42,0:11:44.36,Default,,0000,0000,0000,,消去了右上角的元素,也就是第一行第三列 Dialogue: 0,0:11:44.36,0:11:47.16,Default,,0000,0000,0000,,所以它叫做E(1, 3) Dialogue: 0,0:11:47.16,0:11:51.45,Default,,0000,0000,0000,,你们现在不用搞清楚这些矩阵长什么样 Dialogue: 0,0:11:51.45,0:11:53.74,Default,,0000,0000,0000,,后面我会教你们如何去构建它们 Dialogue: 0,0:11:53.74,0:11:55.67,Default,,0000,0000,0000,,我现在只是想让你们提前确信: Dialogue: 0,0:11:55.67,0:12:00.76,Default,,0000,0000,0000,,这里的每一步操作,都可以通过“乘上一个矩阵”来完成 Dialogue: 0,0:12:01.14,0:12:04.01,Default,,0000,0000,0000,,而我们知道,乘上这些矩阵之后 Dialogue: 0,0:12:04.01,0:12:06.52,Default,,0000,0000,0000,,原矩阵A就变成了单位矩阵I Dialogue: 0,0:12:06.52,0:12:07.53,Default,,0000,0000,0000,,也就是这里 Dialogue: 0,0:12:07.86,0:12:10.59,Default,,0000,0000,0000,,所以这几个矩阵的乘积 Dialogue: 0,0:12:10.59,0:12:13.05,Default,,0000,0000,0000,,如果我们把它们相乘的话 Dialogue: 0,0:12:13.05,0:12:15.32,Default,,0000,0000,0000,,肯定就等于A的逆矩阵 Dialogue: 0,0:12:15.62,0:12:21.87,Default,,0000,0000,0000,,这些消元、交换矩阵乘起来,肯定等于A的逆矩阵 Dialogue: 0,0:12:22.53,0:12:25.95,Default,,0000,0000,0000,,因为拿它们乘上A,结果等于单位矩阵 Dialogue: 0,0:12:26.52,0:12:28.99,Default,,0000,0000,0000,,那么,这会给我们什么结论呢? Dialogue: 0,0:12:28.99,0:12:32.63,Default,,0000,0000,0000,,如果这些矩阵相乘等于逆矩阵 Dialogue: 0,0:12:32.63,0:12:36.77,Default,,0000,0000,0000,,那么拿单位矩阵乘上它们 Dialogue: 0,0:12:37.37,0:12:40.56,Default,,0000,0000,0000,,也就是:第一步乘以E(3, 1) Dialogue: 0,0:12:40.56,0:12:42.73,Default,,0000,0000,0000,,第二步乘以S(2, 3) Dialogue: 0,0:12:42.73,0:12:44.55,Default,,0000,0000,0000,,第三步乘以E(3, 2) Dialogue: 0,0:12:44.58,0:12:45.68,Default,,0000,0000,0000,,如此往复 Dialogue: 0,0:12:45.93,0:12:48.47,Default,,0000,0000,0000,,当你把这些步骤合在一起 Dialogue: 0,0:12:48.47,0:12:52.67,Default,,0000,0000,0000,,实际上就相当于拿逆矩阵乘以单位矩阵,明白吗? Dialogue: 0,0:12:52.67,0:12:54.68,Default,,0000,0000,0000,,我不希望把你弄糊涂 Dialogue: 0,0:12:54.68,0:12:58.36,Default,,0000,0000,0000,,你明白我所说的当然好,不明白也没关系 Dialogue: 0,0:12:58.36,0:13:00.85,Default,,0000,0000,0000,,但是,如果你着眼于大效果的话 Dialogue: 0,0:13:00.85,0:13:03.75,Default,,0000,0000,0000,,这些步骤的效果,实际上相当于: Dialogue: 0,0:13:03.75,0:13:10.26,Default,,0000,0000,0000,,把这个扩增矩阵的左右两边都乘上逆矩阵 Dialogue: 0,0:13:10.55,0:13:13.87,Default,,0000,0000,0000,,左边的乘上逆矩阵,得到单位矩阵 Dialogue: 0,0:13:14.41,0:13:18.92,Default,,0000,0000,0000,,而右边,单位矩阵乘上逆矩阵,当然就得到逆矩阵 Dialogue: 0,0:13:19.38,0:13:21.61,Default,,0000,0000,0000,,话说回来,我不想把你弄糊涂 Dialogue: 0,0:13:21.61,0:13:23.62,Default,,0000,0000,0000,,只是希望能给你一点点解释 Dialogue: 0,0:13:23.62,0:13:26.19,Default,,0000,0000,0000,,以后我会用更具体的例子来解释它的原理 Dialogue: 0,0:13:26.19,0:13:28.37,Default,,0000,0000,0000,,目前你只要知道有这么个简便的方法 Dialogue: 0,0:13:28.37,0:13:32.82,Default,,0000,0000,0000,,不用去算伴随、余因子、子式矩阵、行列式之类的 Dialogue: 0,0:13:32.92,0:13:35.25,Default,,0000,0000,0000,,好的,那我们下段视频再见