1 00:00:00,081 --> 00:00:06,493 Vi må skrive 0,15 om til en brøk. 2 00:00:06,493 --> 00:00:10,593 Det viktige her er å finne ut hvor sifrene står. 3 00:00:10,593 --> 00:00:17,375 Vi har 1 her, på tiendedelsplassen. Vi kan se det som 1 ganger 1/10. 4 00:00:17,375 --> 00:00:24,125 De 5 her, er våre hundredeler, så det er 5 ganger en hundredel. 5 00:00:24,125 --> 00:00:28,574 Det kan vi omskrive til 6 00:00:28,574 --> 00:00:36,841 1 ganger 1/10, som er 1/10, pluss 5 ganger 1/100 som 5 hundredeler. 7 00:00:36,841 --> 00:00:43,475 Når vi legger brøker sammen, skal vi finne en fellesnevner. 8 00:00:43,475 --> 00:00:45,493 Fellesnevneren er 100, 9 00:00:45,493 --> 00:00:52,792 fordi 100 er det minste felles multiplum av både 10 og 100, altså det minste tallet som både 10 og 100 går opp i. 10 00:00:52,792 --> 00:00:57,593 Vi kan skrive det som noe over 100 pluss noe over 100. 11 00:00:57,593 --> 00:01:02,575 Dette endrer seg ikke, det er allerede hundredeler. 12 00:01:02,575 --> 00:01:08,527 Når vi multipliserer nevneren med 10, som vi har gjort her, må vi også ganger telleren med 10. 13 00:01:08,527 --> 00:01:14,342 Det er det samme som 10 hundredeler og nå er vi klare til å legge sammen. 14 00:01:14,342 --> 00:01:21,042 Så legger vi tellerne sammen. 10 pluss 5 er 15, over 100 så svaret er 15 hundredeler. 15 00:01:21,042 --> 00:01:24,393 Når du har løst slike oppgaver mange ganger, vil du kunne løse det ved å bare se på tallet. 16 00:01:24,393 --> 00:01:31,194 Det minste tallet som er 5, står på 100-delsplassen, og 1-tallet tilsvarer 10/100, 17 00:01:31,194 --> 00:01:34,860 eller vi kunne si at det hele er 15/100, 18 00:01:34,860 --> 00:01:40,542 Hvis vi ønsker å forkorte det så mye som mulig, kan vi se, 19 00:01:40,542 --> 00:01:44,075 at både telleren og nevneren kan deles med 5, si vi deler dem begge med 5. 20 00:01:44,075 --> 00:01:48,009 Telleren, som er 15 delt på 5, blir 3, 21 00:01:48,009 --> 00:01:51,810 og nevneren, som er 100 delt på 5, blir 20, 22 00:01:51,810 --> 00:01:55,533 og så kan vi forkorte det mer.