[Script Info] Title: [Events] Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text Dialogue: 0,0:00:00.00,0:00:00.73,Default,,0000,0000,0000,, Dialogue: 0,0:00:00.73,0:00:04.18,Default,,0000,0000,0000,,Find all of the factors\Nof 120. Dialogue: 0,0:00:04.18,0:00:06.16,Default,,0000,0000,0000,,Or another way to think about\Nit, find all of the whole Dialogue: 0,0:00:06.16,0:00:09.65,Default,,0000,0000,0000,,numbers that 120 is\Ndivisible by. Dialogue: 0,0:00:09.65,0:00:12.04,Default,,0000,0000,0000,,So the first one, that's\Nmaybe obvious. Dialogue: 0,0:00:12.04,0:00:14.56,Default,,0000,0000,0000,,All whole numbers are\Ndivisible by 1. Dialogue: 0,0:00:14.56,0:00:21.09,Default,,0000,0000,0000,,So we could write 120 is equal\Nto is to 1 times 120. Dialogue: 0,0:00:21.09,0:00:22.99,Default,,0000,0000,0000,,So let's write a factors\Nlist over here. Dialogue: 0,0:00:22.99,0:00:26.53,Default,,0000,0000,0000,, Dialogue: 0,0:00:26.53,0:00:28.39,Default,,0000,0000,0000,,So this is going to be our\Nfactors list over here. Dialogue: 0,0:00:28.39,0:00:29.90,Default,,0000,0000,0000,,So we just found two factors. Dialogue: 0,0:00:29.90,0:00:31.91,Default,,0000,0000,0000,,We said, well, is it\Ndivisible by 1? Dialogue: 0,0:00:31.91,0:00:33.94,Default,,0000,0000,0000,,Well, every whole number\Nis divisible by 1. Dialogue: 0,0:00:33.94,0:00:37.63,Default,,0000,0000,0000,,This is a whole number, so 1\Nis a factor at the low end. Dialogue: 0,0:00:37.63,0:00:38.49,Default,,0000,0000,0000,,1 is a factor. Dialogue: 0,0:00:38.49,0:00:40.58,Default,,0000,0000,0000,,That's its actual smallest\Nfactor, and its Dialogue: 0,0:00:40.58,0:00:42.33,Default,,0000,0000,0000,,largest factor is 120. Dialogue: 0,0:00:42.33,0:00:46.58,Default,,0000,0000,0000,,You can't have something larger\Nthan 120 dividing Dialogue: 0,0:00:46.58,0:00:49.50,Default,,0000,0000,0000,,evenly into 120. Dialogue: 0,0:00:49.50,0:00:52.40,Default,,0000,0000,0000,,121 will not go into 120. Dialogue: 0,0:00:52.40,0:00:54.71,Default,,0000,0000,0000,,So the largest factor\Non our factors list Dialogue: 0,0:00:54.71,0:00:57.08,Default,,0000,0000,0000,,is going to be 120. Dialogue: 0,0:00:57.08,0:00:58.47,Default,,0000,0000,0000,,Now let's think about others. Dialogue: 0,0:00:58.47,0:01:02.20,Default,,0000,0000,0000,,Let's think about whether\Nis 2 divisible into 120? Dialogue: 0,0:01:02.20,0:01:06.91,Default,,0000,0000,0000,,So there's 120 equals\N2 times something? Dialogue: 0,0:01:06.91,0:01:09.68,Default,,0000,0000,0000,,Well, when you look here,\Nmaybe you immediately Dialogue: 0,0:01:09.68,0:01:12.76,Default,,0000,0000,0000,,recognize that 120 is\Nan even number. Dialogue: 0,0:01:12.76,0:01:15.00,Default,,0000,0000,0000,,It's ones place is a 0. Dialogue: 0,0:01:15.00,0:01:18.43,Default,,0000,0000,0000,,As as long as its ones place is\Na 0, 2, 4, 6 or 8, as long Dialogue: 0,0:01:18.43,0:01:21.11,Default,,0000,0000,0000,,as it's an even number, the\Nwhole number is even and the Dialogue: 0,0:01:21.11,0:01:23.54,Default,,0000,0000,0000,,whole number is divisible\Nby 2. Dialogue: 0,0:01:23.54,0:01:26.44,Default,,0000,0000,0000,,And to figure out what you have\Nto multiply by 2 to get Dialogue: 0,0:01:26.44,0:01:33.69,Default,,0000,0000,0000,,120, well, you can think of 120\Nas 12 times 10, or another Dialogue: 0,0:01:33.69,0:01:36.48,Default,,0000,0000,0000,,way to think about it,\Nit's 2 times 6 times Dialogue: 0,0:01:36.48,0:01:38.89,Default,,0000,0000,0000,,10, or 2 times 60. Dialogue: 0,0:01:38.89,0:01:40.34,Default,,0000,0000,0000,,You could divide it\Nout if you want. Dialogue: 0,0:01:40.34,0:01:43.69,Default,,0000,0000,0000,,You could say, OK,\N2 goes into 120. Dialogue: 0,0:01:43.69,0:01:45.42,Default,,0000,0000,0000,,2 goes into 1 no times. Dialogue: 0,0:01:45.42,0:01:47.24,Default,,0000,0000,0000,,2 goes into 12 six times. Dialogue: 0,0:01:47.24,0:01:49.27,Default,,0000,0000,0000,,6 times 2 is 12. Dialogue: 0,0:01:49.27,0:01:50.41,Default,,0000,0000,0000,,Subtract. Dialogue: 0,0:01:50.41,0:01:51.10,Default,,0000,0000,0000,,You get 0. Dialogue: 0,0:01:51.10,0:01:52.09,Default,,0000,0000,0000,,Bring down the 0. Dialogue: 0,0:01:52.09,0:01:53.91,Default,,0000,0000,0000,,2 goes into 0 zero times. Dialogue: 0,0:01:53.91,0:01:58.01,Default,,0000,0000,0000,,0 times 2 is 0, and you get no\Nremainder there, so it goes Dialogue: 0,0:01:58.01,0:01:59.43,Default,,0000,0000,0000,,sixty times. Dialogue: 0,0:01:59.43,0:02:02.05,Default,,0000,0000,0000,,So we have two more factors\Nright here. Dialogue: 0,0:02:02.05,0:02:04.42,Default,,0000,0000,0000,,So we have the factors. Dialogue: 0,0:02:04.42,0:02:08.07,Default,,0000,0000,0000,,So we've established the next\Nlowest one is 2, and the next Dialogue: 0,0:02:08.07,0:02:10.11,Default,,0000,0000,0000,,highest factor, if we're\Nstarting from the large end, Dialogue: 0,0:02:10.11,0:02:13.31,Default,,0000,0000,0000,,is going to be 60. Dialogue: 0,0:02:13.31,0:02:14.88,Default,,0000,0000,0000,,Now let's think about three. Dialogue: 0,0:02:14.88,0:02:19.78,Default,,0000,0000,0000,,Is 120 equal to 3\Ntimes something? Dialogue: 0,0:02:19.78,0:02:22.06,Default,,0000,0000,0000,,Well, we could just try to test\Nand divide it from the Dialogue: 0,0:02:22.06,0:02:24.41,Default,,0000,0000,0000,,get go, but hopefully,\Nyou already know the Dialogue: 0,0:02:24.41,0:02:25.63,Default,,0000,0000,0000,,divisibility rule. Dialogue: 0,0:02:25.63,0:02:29.22,Default,,0000,0000,0000,,To figure out if something is\Ndivisible by 3, you add up its Dialogue: 0,0:02:29.22,0:02:30.91,Default,,0000,0000,0000,,digits, and if the\Nsum is divisible Dialogue: 0,0:02:30.91,0:02:32.60,Default,,0000,0000,0000,,by 3, we're in business. Dialogue: 0,0:02:32.60,0:02:38.54,Default,,0000,0000,0000,,So if you take 120-- let\Nme do it over here. Dialogue: 0,0:02:38.54,0:02:44.18,Default,,0000,0000,0000,,1 plus 2 plus 0, well, that's\Nequal to 1 plus 2 is 3 plus 0 Dialogue: 0,0:02:44.18,0:02:48.70,Default,,0000,0000,0000,,is 3, and 3 is definitely\Ndivisible by 3. Dialogue: 0,0:02:48.70,0:02:52.61,Default,,0000,0000,0000,,So 120 is going to be\Ndivisible by 3. Dialogue: 0,0:02:52.61,0:02:56.05,Default,,0000,0000,0000,,To figure what that number that\Nyou have to multiply by 3 Dialogue: 0,0:02:56.05,0:02:57.84,Default,,0000,0000,0000,,is, you could do it\Nin your head. Dialogue: 0,0:02:57.84,0:03:01.14,Default,,0000,0000,0000,,You could say, well, 3 goes into\N12 four times, and then Dialogue: 0,0:03:01.14,0:03:04.44,Default,,0000,0000,0000,,you-- well, let me just do it\Nout, just in case, just for Dialogue: 0,0:03:04.44,0:03:06.03,Default,,0000,0000,0000,,those of you who want to\Nsee it worked out. Dialogue: 0,0:03:06.03,0:03:08.09,Default,,0000,0000,0000,,3 goes into 12 four times. Dialogue: 0,0:03:08.09,0:03:10.57,Default,,0000,0000,0000,,4 times 3 is 12. Dialogue: 0,0:03:10.57,0:03:11.46,Default,,0000,0000,0000,,You subtract. Dialogue: 0,0:03:11.46,0:03:12.69,Default,,0000,0000,0000,,You're left with nothing here. Dialogue: 0,0:03:12.69,0:03:14.68,Default,,0000,0000,0000,,You bring down this 0. Dialogue: 0,0:03:14.68,0:03:16.73,Default,,0000,0000,0000,,3 goes into 0 zero times. Dialogue: 0,0:03:16.73,0:03:18.94,Default,,0000,0000,0000,,0 times 3 is 0. Dialogue: 0,0:03:18.94,0:03:20.51,Default,,0000,0000,0000,,Nothing left over. Dialogue: 0,0:03:20.51,0:03:22.08,Default,,0000,0000,0000,,So it goes into it\Nforty times. Dialogue: 0,0:03:22.08,0:03:24.69,Default,,0000,0000,0000,, Dialogue: 0,0:03:24.69,0:03:28.11,Default,,0000,0000,0000,,And the way to think of it in\Nyour head is this is the same Dialogue: 0,0:03:28.11,0:03:29.86,Default,,0000,0000,0000,,thing as 12 times 10. Dialogue: 0,0:03:29.86,0:03:34.28,Default,,0000,0000,0000,,12 divided by 3 is 4, but this\Nis going to be 4 times 10, Dialogue: 0,0:03:34.28,0:03:35.63,Default,,0000,0000,0000,,because you have that\N10 left over. Dialogue: 0,0:03:35.63,0:03:36.74,Default,,0000,0000,0000,,Whatever works for you. Dialogue: 0,0:03:36.74,0:03:40.07,Default,,0000,0000,0000,,Or you can just ignore the 0,\Ndivide by 3, you get a 4, and Dialogue: 0,0:03:40.07,0:03:41.29,Default,,0000,0000,0000,,then put the 0 back there. Dialogue: 0,0:03:41.29,0:03:42.37,Default,,0000,0000,0000,,Whatever works. Dialogue: 0,0:03:42.37,0:03:43.65,Default,,0000,0000,0000,,So we have two more factors. Dialogue: 0,0:03:43.65,0:03:50.78,Default,,0000,0000,0000,,At the low end, we have 3, and\Nat the high end, we have a 40. Dialogue: 0,0:03:50.78,0:03:53.60,Default,,0000,0000,0000,,Now, let's see if 4 divisible\Ninto 120. Dialogue: 0,0:03:53.60,0:03:57.03,Default,,0000,0000,0000,,Now we saw the divisibility\Nrule for 4 is you ignore Dialogue: 0,0:03:57.03,0:03:59.30,Default,,0000,0000,0000,,everything beyond the tens\Nplaces and you just look at Dialogue: 0,0:03:59.30,0:04:01.04,Default,,0000,0000,0000,,the last two digits. Dialogue: 0,0:04:01.04,0:04:05.70,Default,,0000,0000,0000,,So if we're going to to think\Nabout whether 4 is divisible, Dialogue: 0,0:04:05.70,0:04:07.13,Default,,0000,0000,0000,,you just look at the\Nlast two digits. Dialogue: 0,0:04:07.13,0:04:09.13,Default,,0000,0000,0000,,The last two digits are 20. Dialogue: 0,0:04:09.13,0:04:13.43,Default,,0000,0000,0000,,20 is definitely divisible\Nby 4, so 120 will be Dialogue: 0,0:04:13.43,0:04:14.22,Default,,0000,0000,0000,,divisible by 4. Dialogue: 0,0:04:14.22,0:04:16.18,Default,,0000,0000,0000,,4 is going to be a factor. Dialogue: 0,0:04:16.18,0:04:19.25,Default,,0000,0000,0000,,And to figure out what we have\Nto multiply 4 by to get 120, Dialogue: 0,0:04:19.25,0:04:20.10,Default,,0000,0000,0000,,you could do it in your head. Dialogue: 0,0:04:20.10,0:04:23.43,Default,,0000,0000,0000,,You could say 12 divided\Nby 4 is 3, so 120 Dialogue: 0,0:04:23.43,0:04:27.21,Default,,0000,0000,0000,,divided by 4 is 30. Dialogue: 0,0:04:27.21,0:04:29.89,Default,,0000,0000,0000,,So we have two more\Nfactors: 4 and 30. Dialogue: 0,0:04:29.89,0:04:32.67,Default,,0000,0000,0000,,And you could work this out in\Nlong division if you want to Dialogue: 0,0:04:32.67,0:04:35.94,Default,,0000,0000,0000,,make sure that this works out,\Nso let's keep going. Dialogue: 0,0:04:35.94,0:04:40.75,Default,,0000,0000,0000,,And then we have 120 is equal\Nto-- is 5 a factor? Dialogue: 0,0:04:40.75,0:04:44.63,Default,,0000,0000,0000,,Is 5 times something\Nequal to 120? Dialogue: 0,0:04:44.63,0:04:46.75,Default,,0000,0000,0000,,Well, you can't do that simple--\Nwell, first of all, Dialogue: 0,0:04:46.75,0:04:48.55,Default,,0000,0000,0000,,we could just test\Nis it divisible? Dialogue: 0,0:04:48.55,0:04:50.65,Default,,0000,0000,0000,,And 120 ends with a 0. Dialogue: 0,0:04:50.65,0:04:53.40,Default,,0000,0000,0000,,If you end with a 0 or a 5,\Nyou are divisible by 5. Dialogue: 0,0:04:53.40,0:04:55.34,Default,,0000,0000,0000,,So 5 definitely goes into it. Dialogue: 0,0:04:55.34,0:04:56.69,Default,,0000,0000,0000,,Let's figure out\Nhow many times. Dialogue: 0,0:04:56.69,0:04:59.58,Default,,0000,0000,0000,,So 5 goes into 120. Dialogue: 0,0:04:59.58,0:05:00.83,Default,,0000,0000,0000,,It doesn't go into 1. Dialogue: 0,0:05:00.83,0:05:02.75,Default,,0000,0000,0000,,It goes into 12 two times. Dialogue: 0,0:05:02.75,0:05:04.78,Default,,0000,0000,0000,,2 times 5 is 10. Dialogue: 0,0:05:04.78,0:05:05.85,Default,,0000,0000,0000,,Subtract. Dialogue: 0,0:05:05.85,0:05:07.13,Default,,0000,0000,0000,,You get 2. Dialogue: 0,0:05:07.13,0:05:08.83,Default,,0000,0000,0000,,Bring down the 0. Dialogue: 0,0:05:08.83,0:05:11.29,Default,,0000,0000,0000,,5 goes into 20 four times. Dialogue: 0,0:05:11.29,0:05:18.62,Default,,0000,0000,0000,,4 times 5 is 20, and then you\Nsubtract, and you have no left Dialogue: 0,0:05:18.62,0:05:21.12,Default,,0000,0000,0000,,over, as we expect, because\Nit should go in evenly. Dialogue: 0,0:05:21.12,0:05:24.76,Default,,0000,0000,0000,,This number ends with\Na 0 or a 5. Dialogue: 0,0:05:24.76,0:05:27.64,Default,,0000,0000,0000,,Let me delete all of this so we\Ncan have our scratch space Dialogue: 0,0:05:27.64,0:05:29.68,Default,,0000,0000,0000,,to work with later on. Dialogue: 0,0:05:29.68,0:05:33.81,Default,,0000,0000,0000,,So 5 times 24 is also equal\Nto 120, we have two more Dialogue: 0,0:05:33.81,0:05:37.95,Default,,0000,0000,0000,,factors: 5 and 24. Dialogue: 0,0:05:37.95,0:05:40.40,Default,,0000,0000,0000,,Let me clear up some space here\Nbecause I think we're Dialogue: 0,0:05:40.40,0:05:42.51,Default,,0000,0000,0000,,going to be dealing with\Na lot of factors. Dialogue: 0,0:05:42.51,0:05:45.23,Default,,0000,0000,0000,,So let me move this\Nright here. Dialogue: 0,0:05:45.23,0:05:50.40,Default,,0000,0000,0000,,Let me cut it and then let me\Npaste it and move this over Dialogue: 0,0:05:50.40,0:05:53.68,Default,,0000,0000,0000,,here so we have more space\Nfor our factors. Dialogue: 0,0:05:53.68,0:05:55.58,Default,,0000,0000,0000,,So we have 5 and 24. Dialogue: 0,0:05:55.58,0:05:58.59,Default,,0000,0000,0000,,Let's move on to 6. Dialogue: 0,0:05:58.59,0:06:02.47,Default,,0000,0000,0000,,So 120 is equal to\N6 times what? Dialogue: 0,0:06:02.47,0:06:05.05,Default,,0000,0000,0000,,Now, to be divisible by\N6, you have to be Dialogue: 0,0:06:05.05,0:06:07.37,Default,,0000,0000,0000,,divisible by 2 and 3. Dialogue: 0,0:06:07.37,0:06:09.63,Default,,0000,0000,0000,,Now, we know that we're already\Ndivisible by 2 and 3, Dialogue: 0,0:06:09.63,0:06:12.53,Default,,0000,0000,0000,,so we're definitely going to\Nbe divisible by 6, and you Dialogue: 0,0:06:12.53,0:06:14.14,Default,,0000,0000,0000,,should hopefully be able to\Ndo this one in your head. Dialogue: 0,0:06:14.14,0:06:17.30,Default,,0000,0000,0000,,5 was a little bit harder to do\Nin your head. but 120, you Dialogue: 0,0:06:17.30,0:06:21.93,Default,,0000,0000,0000,,could say, well, 12 divided by 6\Nis 2, and then you have that Dialogue: 0,0:06:21.93,0:06:26.14,Default,,0000,0000,0000,,0 there, so 120 divided\Nby 6 would be 20. Dialogue: 0,0:06:26.14,0:06:28.55,Default,,0000,0000,0000,,And you could work it out in\Nlong division if you like. Dialogue: 0,0:06:28.55,0:06:30.92,Default,,0000,0000,0000,,So 6 times 20 are two\Nmore factors. Dialogue: 0,0:06:30.92,0:06:33.59,Default,,0000,0000,0000,, Dialogue: 0,0:06:33.59,0:06:35.85,Default,,0000,0000,0000,,Now let's think about 7. Dialogue: 0,0:06:35.85,0:06:37.23,Default,,0000,0000,0000,,Let's think about 7 here. Dialogue: 0,0:06:37.23,0:06:40.49,Default,,0000,0000,0000,,7 is a very bizarre number, and\Njust to test it, you could Dialogue: 0,0:06:40.49,0:06:41.90,Default,,0000,0000,0000,,think of other ways to do it. Dialogue: 0,0:06:41.90,0:06:45.13,Default,,0000,0000,0000,,Let's just try to divide\N7 into 120. Dialogue: 0,0:06:45.13,0:06:46.30,Default,,0000,0000,0000,,7 doesn't go into 1. Dialogue: 0,0:06:46.30,0:06:48.07,Default,,0000,0000,0000,,It goes into 12 one time. Dialogue: 0,0:06:48.07,0:06:50.13,Default,,0000,0000,0000,,1 times 7 is 7. Dialogue: 0,0:06:50.13,0:06:51.02,Default,,0000,0000,0000,,You subtract. Dialogue: 0,0:06:51.02,0:06:53.15,Default,,0000,0000,0000,,12 minus 7 is 5. Dialogue: 0,0:06:53.15,0:06:56.00,Default,,0000,0000,0000,,Bring down the 0. Dialogue: 0,0:06:56.00,0:06:59.61,Default,,0000,0000,0000,,7 times 7 is 49, so it goes\Ninto it seven times. Dialogue: 0,0:06:59.61,0:07:01.65,Default,,0000,0000,0000,,7 times 7 is 49. Dialogue: 0,0:07:01.65,0:07:02.48,Default,,0000,0000,0000,,Subtract. Dialogue: 0,0:07:02.48,0:07:05.82,Default,,0000,0000,0000,,You have a remainder, so it\Ndoes not divide evenly. Dialogue: 0,0:07:05.82,0:07:07.52,Default,,0000,0000,0000,,So 7 does not work. Dialogue: 0,0:07:07.52,0:07:10.70,Default,,0000,0000,0000,, Dialogue: 0,0:07:10.70,0:07:12.77,Default,,0000,0000,0000,,Now let's think about 8. Dialogue: 0,0:07:12.77,0:07:15.68,Default,,0000,0000,0000,,Let's think about\Nwhether 8 works. Dialogue: 0,0:07:15.68,0:07:17.36,Default,,0000,0000,0000,,Let's think about 8. Dialogue: 0,0:07:17.36,0:07:18.85,Default,,0000,0000,0000,,I'll do the same process. Dialogue: 0,0:07:18.85,0:07:26.54,Default,,0000,0000,0000,,Let's take 8 into 120. Dialogue: 0,0:07:26.54,0:07:27.89,Default,,0000,0000,0000,,Let's just work it out. Dialogue: 0,0:07:27.89,0:07:29.64,Default,,0000,0000,0000,,And just as a little bit\Nof a hint-- well, I'll Dialogue: 0,0:07:29.64,0:07:30.27,Default,,0000,0000,0000,,just work it out. Dialogue: 0,0:07:30.27,0:07:33.39,Default,,0000,0000,0000,,8 goes into 12-- it doesn't\Ngo into 1, so it Dialogue: 0,0:07:33.39,0:07:35.50,Default,,0000,0000,0000,,goes into 12 one time. Dialogue: 0,0:07:35.50,0:07:38.25,Default,,0000,0000,0000,,1 times 8 is 8. Dialogue: 0,0:07:38.25,0:07:39.24,Default,,0000,0000,0000,,Subtract there. Dialogue: 0,0:07:39.24,0:07:41.16,Default,,0000,0000,0000,,12 minus 8 is 4. Dialogue: 0,0:07:41.16,0:07:43.15,Default,,0000,0000,0000,,Bring down the 0. Dialogue: 0,0:07:43.15,0:07:45.28,Default,,0000,0000,0000,,8 goes into 40 five times. Dialogue: 0,0:07:45.28,0:07:49.19,Default,,0000,0000,0000,,5 times 8 is 40, and you're left\Nwith no remainder, so it Dialogue: 0,0:07:49.19,0:07:49.94,Default,,0000,0000,0000,,goes evenly. Dialogue: 0,0:07:49.94,0:07:53.25,Default,,0000,0000,0000,,So 120-- let me get\Nrid of that. Dialogue: 0,0:07:53.25,0:08:02.63,Default,,0000,0000,0000,,120 is equal to 8 times 15, so\Nlet's add that to our factor Dialogue: 0,0:08:02.63,0:08:09.44,Default,,0000,0000,0000,,list. We now have an 8\Nand now we have a 15. Dialogue: 0,0:08:09.44,0:08:11.92,Default,,0000,0000,0000,,Now, is it divisible by 9? Dialogue: 0,0:08:11.92,0:08:13.87,Default,,0000,0000,0000,,Is 120 divisible by 9? Dialogue: 0,0:08:13.87,0:08:16.30,Default,,0000,0000,0000,,To test that out, you just\Nadd up the digits. Dialogue: 0,0:08:16.30,0:08:20.43,Default,,0000,0000,0000,,1 plus 2 plus 0 is equal to 3. Dialogue: 0,0:08:20.43,0:08:24.35,Default,,0000,0000,0000,,Well, that'll satisfy our 3\Ndivisibility rule, but 3 is Dialogue: 0,0:08:24.35,0:08:27.32,Default,,0000,0000,0000,,not divisible by 9, so our\Nnumber will not be Dialogue: 0,0:08:27.32,0:08:28.70,Default,,0000,0000,0000,,divisible by 9. Dialogue: 0,0:08:28.70,0:08:31.38,Default,,0000,0000,0000,,So 9 will not work out. Dialogue: 0,0:08:31.38,0:08:32.95,Default,,0000,0000,0000,,9 does not work out. Dialogue: 0,0:08:32.95,0:08:34.73,Default,,0000,0000,0000,,So let's move on to 10. Dialogue: 0,0:08:34.73,0:08:36.45,Default,,0000,0000,0000,,Well, this is pretty\Nstraightforward. Dialogue: 0,0:08:36.45,0:08:39.68,Default,,0000,0000,0000,,It ends in 0, so we will\Nbe divisible by 10. Dialogue: 0,0:08:39.68,0:08:41.56,Default,,0000,0000,0000,,So let me write that down. Dialogue: 0,0:08:41.56,0:08:46.61,Default,,0000,0000,0000,,120 is equal to 10 times--\Nand this is pretty Dialogue: 0,0:08:46.61,0:08:49.78,Default,,0000,0000,0000,,straightforward-- 10 times 12. Dialogue: 0,0:08:49.78,0:08:51.56,Default,,0000,0000,0000,,This is exactly what 120 is. Dialogue: 0,0:08:51.56,0:08:53.80,Default,,0000,0000,0000,,It's 10 times 12, so let's\Nwrite those factors down. Dialogue: 0,0:08:53.80,0:08:56.50,Default,,0000,0000,0000,,10 and 12. Dialogue: 0,0:08:56.50,0:08:58.22,Default,,0000,0000,0000,,And then we have one\Nnumber left. Dialogue: 0,0:08:58.22,0:08:58.74,Default,,0000,0000,0000,,We have 11. Dialogue: 0,0:08:58.74,0:09:00.44,Default,,0000,0000,0000,,We don't have to go above 11,\Nbecause we already went Dialogue: 0,0:09:00.44,0:09:02.67,Default,,0000,0000,0000,,through 12, and we know that\Nthere aren't any factors above Dialogue: 0,0:09:02.67,0:09:07.27,Default,,0000,0000,0000,,that, because we were going in\Ndescending order, so we've Dialogue: 0,0:09:07.27,0:09:08.61,Default,,0000,0000,0000,,really filled in all the gaps. Dialogue: 0,0:09:08.61,0:09:09.83,Default,,0000,0000,0000,,You could try 11. Dialogue: 0,0:09:09.83,0:09:12.04,Default,,0000,0000,0000,,We could try it by hand,\Nif you like. Dialogue: 0,0:09:12.04,0:09:15.37,Default,,0000,0000,0000,,11 goes into 120-- now you know,\Nif with you know your Dialogue: 0,0:09:15.37,0:09:17.88,Default,,0000,0000,0000,,multiplication tables through\N11, that this won't work, but Dialogue: 0,0:09:17.88,0:09:18.90,Default,,0000,0000,0000,,I'll just show you. Dialogue: 0,0:09:18.90,0:09:21.25,Default,,0000,0000,0000,,11 goes into 12 one time. Dialogue: 0,0:09:21.25,0:09:23.25,Default,,0000,0000,0000,,1 times 11 is 11. Dialogue: 0,0:09:23.25,0:09:24.63,Default,,0000,0000,0000,,Subtract. Dialogue: 0,0:09:24.63,0:09:26.46,Default,,0000,0000,0000,,1, bring down the 0. Dialogue: 0,0:09:26.46,0:09:29.01,Default,,0000,0000,0000,,11 goes into 10 zero times. Dialogue: 0,0:09:29.01,0:09:30.96,Default,,0000,0000,0000,,0 times 11 is 0. Dialogue: 0,0:09:30.96,0:09:33.50,Default,,0000,0000,0000,,you're left with a\Nremainder of 10. Dialogue: 0,0:09:33.50,0:09:36.15,Default,,0000,0000,0000,,So 11 goes into 20 ten times\Nwith a remainder of 10. Dialogue: 0,0:09:36.15,0:09:37.90,Default,,0000,0000,0000,,It definitely does\Nnot go in evenly. Dialogue: 0,0:09:37.90,0:09:45.22,Default,,0000,0000,0000,,So we have all of our factors\Nhere: 1, 2, 3, 4, 5, 6, 8, 10, Dialogue: 0,0:09:45.22,0:09:51.26,Default,,0000,0000,0000,,12, 15, 20, 24, 30,\N40, 60 and 120. Dialogue: 0,0:09:51.26,0:09:52.75,Default,,0000,0000,0000,,And we're done! Dialogue: 0,0:09:52.75,0:09:52.93,Default,,0000,0000,0000,,