[Script Info] Title: [Events] Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text Dialogue: 0,0:00:00.90,0:00:04.54,Default,,0000,0000,0000,,Find the greatest common factor of these monomials. Dialogue: 0,0:00:04.54,0:00:07.02,Default,,0000,0000,0000,,Now the greatest common factor of anything Dialogue: 0,0:00:07.02,0:00:11.76,Default,,0000,0000,0000,,is the largest factor that's divisible into both -- Dialogue: 0,0:00:11.76,0:00:13.54,Default,,0000,0000,0000,,if we're just talking about pure numbers: Dialogue: 0,0:00:13.54,0:00:14.94,Default,,0000,0000,0000,,into both numbers, Dialogue: 0,0:00:14.94,0:00:16.64,Default,,0000,0000,0000,,or in this case into both monomials. Dialogue: 0,0:00:16.64,0:00:18.42,Default,,0000,0000,0000,,Now we have to be a little bit careful Dialogue: 0,0:00:18.42,0:00:20.21,Default,,0000,0000,0000,,when we talk about 'greatest' Dialogue: 0,0:00:20.21,0:00:22.94,Default,,0000,0000,0000,,in the context of algebraic expressions like this Dialogue: 0,0:00:22.94,0:00:25.02,Default,,0000,0000,0000,,because it's 'greatest' from the point of view that Dialogue: 0,0:00:25.02,0:00:27.20,Default,,0000,0000,0000,,it includes the most factors Dialogue: 0,0:00:27.20,0:00:29.87,Default,,0000,0000,0000,,for each of these monomials, Dialogue: 0,0:00:29.87,0:00:32.68,Default,,0000,0000,0000,,it's not necessarily the greatest possible number Dialogue: 0,0:00:32.68,0:00:35.20,Default,,0000,0000,0000,,because maybe some of these variables Dialogue: 0,0:00:35.20,0:00:36.76,Default,,0000,0000,0000,,can take on negative values; Dialogue: 0,0:00:36.76,0:00:38.84,Default,,0000,0000,0000,,maybe they are taking on values less than one Dialogue: 0,0:00:38.84,0:00:41.27,Default,,0000,0000,0000,,so if squared they actually become a smaller number Dialogue: 0,0:00:41.27,0:00:42.54,Default,,0000,0000,0000,,but I think, Dialogue: 0,0:00:42.54,0:00:44.27,Default,,0000,0000,0000,,without getting too much into the weeds there, Dialogue: 0,0:00:44.27,0:00:46.62,Default,,0000,0000,0000,,I think if we just kind of run through the process of it Dialogue: 0,0:00:46.62,0:00:48.52,Default,,0000,0000,0000,,you'll understand it a little bit better. Dialogue: 0,0:00:48.52,0:00:50.42,Default,,0000,0000,0000,,So to find the greatest common factor. Dialogue: 0,0:00:50.42,0:00:51.84,Default,,0000,0000,0000,,Let's just essentially break down Dialogue: 0,0:00:51.84,0:00:53.62,Default,,0000,0000,0000,,each of these numbers into Dialogue: 0,0:00:53.62,0:00:55.88,Default,,0000,0000,0000,,what we could call their prime factorization Dialogue: 0,0:00:55.88,0:00:57.18,Default,,0000,0000,0000,,but it's kind of a combination Dialogue: 0,0:00:57.18,0:00:58.36,Default,,0000,0000,0000,,of the prime factorization Dialogue: 0,0:00:58.36,0:01:00.01,Default,,0000,0000,0000,,of the numeric parts of the number Dialogue: 0,0:01:00.01,0:01:02.84,Default,,0000,0000,0000,,plus essentially the factorization of the variable part. Dialogue: 0,0:01:02.84,0:01:04.61,Default,,0000,0000,0000,,So if we wanted to write 10, Dialogue: 0,0:01:04.61,0:01:08.14,Default,,0000,0000,0000,,or if we wanted to write 10cd^2 Dialogue: 0,0:01:08.14,0:01:09.54,Default,,0000,0000,0000,,we can rewrite that Dialogue: 0,0:01:09.54,0:01:12.02,Default,,0000,0000,0000,,as the product of the prime factors of 10 Dialogue: 0,0:01:12.02,0:01:14.94,Default,,0000,0000,0000,,- which is just 2 * 5 - Dialogue: 0,0:01:14.94,0:01:16.67,Default,,0000,0000,0000,,those are both prime numbers Dialogue: 0,0:01:16.67,0:01:18.47,Default,,0000,0000,0000,,So 10 can be broken down Dialogue: 0,0:01:18.47,0:01:20.27,Default,,0000,0000,0000,,as 2 times 5. Dialogue: 0,0:01:20.27,0:01:22.87,Default,,0000,0000,0000,,C can only be broken down by c. Dialogue: 0,0:01:22.87,0:01:24.08,Default,,0000,0000,0000,,We don't know anything else Dialogue: 0,0:01:24.08,0:01:26.20,Default,,0000,0000,0000,,that c can be broken into. Dialogue: 0,0:01:26.20,0:01:28.84,Default,,0000,0000,0000,,So 2 times 5 times c Dialogue: 0,0:01:28.84,0:01:31.27,Default,,0000,0000,0000,,But then the d^2 can be rewritten Dialogue: 0,0:01:31.27,0:01:34.45,Default,,0000,0000,0000,,as d times d. Dialogue: 0,0:01:34.66,0:01:36.21,Default,,0000,0000,0000,,This is what I mean Dialogue: 0,0:01:36.21,0:01:38.06,Default,,0000,0000,0000,,by writing this monomial Dialogue: 0,0:01:38.06,0:01:41.13,Default,,0000,0000,0000,,as the product of its constituants. Dialogue: 0,0:01:41.13,0:01:42.95,Default,,0000,0000,0000,,For the numeric part of it, Dialogue: 0,0:01:42.95,0:01:45.13,Default,,0000,0000,0000,,it's the constituants of the prime factors Dialogue: 0,0:01:45.13,0:01:46.66,Default,,0000,0000,0000,,and for the rest of it Dialogue: 0,0:01:46.66,0:01:48.79,Default,,0000,0000,0000,,we are just expanding out the exponents. Dialogue: 0,0:01:48.79,0:01:50.05,Default,,0000,0000,0000,,Now, let's do this for Dialogue: 0,0:01:50.05,0:01:52.65,Default,,0000,0000,0000,,25 c to the third, d squared. Dialogue: 0,0:01:52.65,0:01:55.28,Default,,0000,0000,0000,,So 25, that is 5 * 5. Dialogue: 0,0:01:55.28,0:01:58.39,Default,,0000,0000,0000,,So this is equal to 5 * 5. Dialogue: 0,0:01:58.39,0:02:00.53,Default,,0000,0000,0000,,And then c^3, that is Dialogue: 0,0:02:00.53,0:02:04.39,Default,,0000,0000,0000,,c times c times c. Dialogue: 0,0:02:04.39,0:02:06.79,Default,,0000,0000,0000,,And then d-squared, Dialogue: 0,0:02:06.79,0:02:11.44,Default,,0000,0000,0000,,that is d times d. Dialogue: 0,0:02:11.44,0:02:13.79,Default,,0000,0000,0000,,So what is their greatest common factor Dialogue: 0,0:02:13.79,0:02:15.88,Default,,0000,0000,0000,,in this context? Dialogue: 0,0:02:15.88,0:02:21.12,Default,,0000,0000,0000,,Well, they both have at least one 5, Dialogue: 0,0:02:21.12,0:02:26.40,Default,,0000,0000,0000,,and they both have at least one c Dialogue: 0,0:02:26.40,0:02:31.63,Default,,0000,0000,0000,,and then they both have two d's. Dialogue: 0,0:02:31.63,0:02:34.79,Default,,0000,0000,0000,,So the greatest common factor in this context Dialogue: 0,0:02:34.79,0:02:36.12,Default,,0000,0000,0000,,the greatest common factor Dialogue: 0,0:02:36.12,0:02:37.59,Default,,0000,0000,0000,,of these two monomials, Dialogue: 0,0:02:37.59,0:02:39.79,Default,,0000,0000,0000,,will be the factors that they have in common. Dialogue: 0,0:02:39.79,0:02:41.28,Default,,0000,0000,0000,,It will be equal to Dialogue: 0,0:02:41.28,0:02:43.62,Default,,0000,0000,0000,,this five, times Dialogue: 0,0:02:43.62,0:02:45.48,Default,,0000,0000,0000,,we only have one c in common, Dialogue: 0,0:02:45.48,0:02:48.37,Default,,0000,0000,0000,,times - we have two d's in common. Dialogue: 0,0:02:48.37,0:02:50.12,Default,,0000,0000,0000,,So this is equal to Dialogue: 0,0:02:50.12,0:02:53.88,Default,,0000,0000,0000,,5 times c times d-squared. Dialogue: 0,0:02:53.88,0:02:55.94,Default,,0000,0000,0000,,So 5 c d-squared Dialogue: 0,0:02:55.94,0:02:57.39,Default,,0000,0000,0000,,we can view as the greatest -- Dialogue: 0,0:02:57.39,0:02:58.92,Default,,0000,0000,0000,,I'll put that in quotes, Dialogue: 0,0:02:58.92,0:03:00.28,Default,,0000,0000,0000,,you know, depending on whether c Dialogue: 0,0:03:00.28,0:03:01.40,Default,,0000,0000,0000,,is negative or positive - Dialogue: 0,0:03:01.40,0:03:02.70,Default,,0000,0000,0000,,and d is greater than Dialogue: 0,0:03:02.70,0:03:03.100,Default,,0000,0000,0000,,or less than zero. Dialogue: 0,0:03:03.100,0:03:05.62,Default,,0000,0000,0000,,But this is the "greatest" common factor Dialogue: 0,0:03:05.62,0:03:07.22,Default,,0000,0000,0000,,of these two monomials. Dialogue: 0,0:03:07.22,0:03:09.06,Default,,0000,0000,0000,,It's devisable into both of them Dialogue: 0,0:03:09.06,0:03:10.06,Default,,0000,0000,0000,,and it uses Dialogue: 0,0:03:10.06,0:03:11.58,Default,,0000,0000,0000,,the most factors possible.