0:00:00.423,0:00:04.370 "Carly hat versucht, eine Gleichung [br]Schritt für Schritt zu lösen." 0:00:04.370,0:00:06.042 Hier sehen wir, welche Schritte sie gemacht hat. 0:00:06.042,0:00:07.667 Hier sehen wir, welche Schritte sie gemacht hat. 0:00:07.667,0:00:10.082 Unsere Aufgabe ist es, ihren Fehler zu finden. 0:00:10.082,0:00:11.289 Unsere Aufgabe ist es, ihren Fehler zu finden. 0:00:11.289,0:00:15.817 Gegeben war die Gleichung " 7a = 28 ". 0:00:15.817,0:00:19.578 Auf der linken Seite hat Carly durch a geteilt 0:00:19.578,0:00:23.201 und auf der rechten Seite durch 7. 0:00:23.201,0:00:24.660 Das erscheint mir verdächtig. 0:00:24.660,0:00:26.260 Wenn man die eine Seite einer Gleichung verändert, 0:00:26.260,0:00:27.720 muss man die gleiche Veränderung [br]auch auf der anderen Seite vornehmen. 0:00:27.720,0:00:28.960 muss man die gleiche Veränderung [br]auch auf der anderen Seite vornehmen. 0:00:28.960,0:00:31.720 Hier beschließt sie, die linke Seite durch a zu teilen, 0:00:31.720,0:00:35.040 also müsste sie das Gleiche auch [br]mit der rechten Seite machen. 0:00:35.042,0:00:37.527 Oder wenn sie die rechte Seite durch 7 teilen möchte, dann müsste sie die linke Seite ebenfalls durch 7 teilen. 0:00:37.527,0:00:40.104 Oder wenn sie die rechte Seite durch 7 teilen möchte, dann müsste sie die linke Seite ebenfalls durch 7 teilen. 0:00:40.104,0:00:42.542 Aber hier dividiert sie beide [br]Seiten durch unterschiedliche Dinge. 0:00:42.542,0:00:46.211 Also macht sie in Schritt 1 ihren Fehler. 0:00:46.211,0:00:47.302 Um nach a aufzulösen wäre es wohl am [br]sinnvollsten, beide Seiten durch 7 zu teilen. 0:00:47.302,0:00:49.392 Um nach a aufzulösen wäre es wohl am [br]sinnvollsten, beide Seiten durch 7 zu teilen. 0:00:49.400,0:00:52.758 Um nach a aufzulösen wäre es wohl am [br]sinnvollsten, beide Seiten durch 7 zu teilen. 0:00:52.760,0:00:54.848 Dann hätte sie rechts die 4 und links würde sie[br]7a durch 7 teilen, sodass nur das a übrig bleibt. 0:00:54.848,0:00:56.780 Dann hätte sie rechts die 4 und links würde sie[br]7a durch 7 teilen, sodass nur das a übrig bleibt. 0:00:56.780,0:00:59.140 Dann hätte sie rechts die 4 und links würde sie[br]7a durch 7 teilen, sodass nur das a übrig bleibt. 0:00:59.140,0:01:00.978 Und so wüsste sie: a muss gleich 4 sein. 0:01:00.978,0:01:02.232 Weiter geht's mit ein paar mehr solcher Aufgaben. 0:01:02.232,0:01:05.181 Weiter geht's mit ein paar mehr solcher Aufgaben. 0:01:05.181,0:01:07.780 "Trent hat versucht, eine Gleichung [br]Schritt für Schritt zu lösen. 0:01:07.780,0:01:10.320 Finde seinen Fehler." 0:01:12.913,0:01:16.511 Gegeben ist: " g/3 = 4/3 " 0:01:16.511,0:01:17.997 Im ersten Schritt multipliziert er die linke Seite mit 3. 0:01:17.997,0:01:22.223 Im ersten Schritt multipliziert er die linke Seite mit 3. 0:01:22.223,0:01:27.006 Und auf der rechten Seite multipliziert er mit 1/3. 0:01:27.006,0:01:29.398 Wie vorhin macht also auch er auf [br]beiden Seiten unterschiedliche Dinge, 0:01:29.398,0:01:30.930 Wie vorhin macht also auch er auf [br]beiden Seiten unterschiedliche Dinge, 0:01:30.930,0:01:32.324 Wie vorhin macht also auch er auf [br]beiden Seiten unterschiedliche Dinge, 0:01:32.324,0:01:34.669 und wenn man das macht, befinden sich die [br]beiden Seiten nicht mehr im Gleichgewicht. 0:01:34.669,0:01:37.548 und wenn man das macht, befinden sich die [br]beiden Seiten nicht mehr im Gleichgewicht. 0:01:37.548,0:01:38.918 Wenn g/3 gleich 4/3 ist, [br]und man multipliziert das hier mit 3, 0:01:38.918,0:01:42.586 Wenn g/3 gleich 4/3 ist, [br]und man multipliziert das hier mit 3, 0:01:42.586,0:01:45.628 und dann multipliziert man das hier nur [br]mit 1/3, dann wird dieser Teil hier größer. 0:01:45.628,0:01:47.184 und dann multipliziert man das hier nur [br]mit 1/3, dann wird dieser Teil hier größer. 0:01:47.184,0:01:49.134 Denn wenn man etwas mit 3 multipliziert, wird es natürlich größer als wenn man es mit 1/3 multipliziert. 0:01:49.134,0:01:51.920 Denn wenn man etwas mit 3 multipliziert, wird es natürlich größer als wenn man es mit 1/3 multipliziert. 0:01:51.920,0:01:54.800 Somit ist die Gleichheit nicht mehr gegeben. [br]Um diese Aufrechtzuerhalten, 0:01:54.800,0:01:55.635 Somit ist die Gleichheit nicht mehr gegeben. [br]Um diese Aufrechtzuerhalten, 0:01:55.635,0:01:58.608 müssen wir auch links mit 3 multiplizieren, [br]wenn wir das auf der rechten Seite tun. 0:01:58.608,0:02:01.835 Er hat also auch einen Fehler in Schritt 1 gemacht. 0:02:02.532,0:02:04.993 "Ling hat versucht, eine Gleichung [br]Schritt für Schritt zu lösen. 0:02:04.993,0:02:07.013 Finde seinen Fehler." 0:02:07.020,0:02:11.840 Gegeben ist: " 12 = p + 6,2 " 0:02:11.840,0:02:12.794 Wie es aussieht addiert Ling auf der linken Seite 6,2 0:02:12.794,0:02:17.554 Wie es aussieht addiert Ling auf der linken Seite 6,2 0:02:17.554,0:02:19.644 und auf der rechten Seite stand vorher " p + 6.2 ", [br]und er versucht 6,2 abzuziehen. 0:02:19.644,0:02:21.594 und auf der rechten Seite stand vorher " p + 6.2 ", [br]und er versucht 6,2 abzuziehen. 0:02:21.594,0:02:26.192 und auf der rechten Seite stand vorher " p + 6.2 ", [br]und er versucht 6,2 abzuziehen. 0:02:26.192,0:02:28.606 Diesmal haben wir also zwei mal dieselbe Zahl, allerdings wird sie links addiert und rechts subtrahiert. 0:02:28.606,0:02:32.391 Diesmal haben wir also zwei mal dieselbe Zahl, allerdings wird sie links addiert und rechts subtrahiert. 0:02:32.400,0:02:36.100 Wieder wird also nicht auf beiden [br]Seiten die gleiche Operation durchgeführt. 0:02:36.100,0:02:36.687 Wenn wir auf der linken Seite 6,2 addieren möchten, dann müssen wir auch rechts 6,2 dazuaddieren. 0:02:36.687,0:02:39.220 Wenn wir auf der linken Seite 6,2 addieren möchten, dann müssen wir auch rechts 6,2 dazuaddieren. 0:02:39.220,0:02:40.980 Und wenn wir rechts 6,2 subtrahieren möchten, [br]dann müssen wir sie auch links subtrahieren. 0:02:40.982,0:02:44.651 Und wenn wir rechts 6,2 subtrahieren möchten, [br]dann müssen wir sie auch links subtrahieren. 0:02:44.651,0:02:47.646 Wir haben eine Menge Fehler in Schritt 1. 0:02:47.646,0:02:51.361 Vielleicht finden wir auch eine, wo der [br]Fehler nicht im ersten Schritt passiert. 0:02:51.361,0:02:52.034 Vielleicht finden wir auch eine, wo der [br]Fehler nicht im ersten Schritt passiert. 0:02:52.034,0:02:54.472 "Alanna hat versucht, eine Gleichung Schritt für Schritt zu lösen." 0:02:54.480,0:03:00.480 "4c = 12" - Sie dividiert die linke Seite [br]durch 4 und multipliziert die rechte mit 4. 0:03:00.480,0:03:02.529 "4c = 12" - Sie dividiert die linke Seite [br]durch 4 und multipliziert die rechte mit 4. 0:03:02.529,0:03:04.619 Falsch, denn wenn man die linke Seite durch 4 teilt, muss man auch die rechte Seite durch 4 teilen. 0:03:04.619,0:03:06.987 Falsch, denn wenn man die linke Seite durch 4 teilt, muss man auch die rechte Seite durch 4 teilen. 0:03:06.987,0:03:08.427 Falsch, denn wenn man die linke Seite durch 4 teilt, muss man auch die rechte Seite durch 4 teilen. 0:03:08.427,0:03:11.260 Also noch ein Fehler in Schritt 1. 0:03:11.260,0:03:13.489 Machen wir noch eine Aufgabe. 0:03:13.489,0:03:18.411 Also: " n + 12 = 18,3 ". 0:03:18.411,0:03:20.431 Hier hatten wir n + 12 und Rico subtrahiert 12. 0:03:20.431,0:03:23.705 Hier hatten wir n + 12 und Rico subtrahiert 12. 0:03:23.705,0:03:25.493 Da er links 12 abzieht, muss er [br]das Gleiche auch rechts machen. 0:03:25.500,0:03:27.760 Da er links 12 abzieht, muss er [br]das Gleiche auch rechts machen. 0:03:27.760,0:03:29.280 Und das macht er auch. 0:03:29.280,0:03:31.160 Gegeben war 18,3 und er subtrahiert 12. 0:03:31.160,0:03:33.736 Er subtrahiert also 12 von beiden Seiten. 0:03:33.736,0:03:37.846 Auf der linken Seite steht jetzt also [br]" n + 12 - 12 ", und das entspricht n. 0:03:37.846,0:03:39.640 Und genau hat er auch die 12 [br]subrahiert: damit das "n" einzeln steht. 0:03:39.640,0:03:42.100 Und genau deshalb hat er auch die 12 [br]subrahiert: damit das "n" einzeln steht. 0:03:42.100,0:03:46.760 Und auf der rechten Seite: " 18,3 - 12 ". 0:03:46.762,0:03:51.336 18 - 12 ergibt 6, also sollte hier "6,3" stehen. Rico hat also einen kleine Rechenfehler in Schritt 2 gemacht. 0:03:51.336,0:03:53.542 18 - 12 ergibt 6, also sollte hier "6,3" stehen. Rico hat also einen kleine Rechenfehler in Schritt 2 gemacht. 0:03:53.542,0:03:58.542 18 - 12 ergibt 6, also sollte hier "6,3" stehen. Rico hat also einen kleine Rechenfehler in Schritt 2 gemacht. 0:03:58.673,0:04:03.673 Damit wären wir so weit fertig.