[Script Info] Title: [Events] Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text Dialogue: 0,0:00:00.00,0:00:00.66,Default,,0000,0000,0000,,大家好 Dialogue: 0,0:00:00.66,0:00:02.57,Default,,0000,0000,0000,,這影片中我們會去看看一些常見函數 Dialogue: 0,0:00:02.57,0:00:03.92,Default,,0000,0000,0000,,的導數 Dialogue: 0,0:00:03.92,0:00:05.75,Default,,0000,0000,0000,,我們不會證明它們 Dialogue: 0,0:00:05.75,0:00:07.92,Default,,0000,0000,0000,,但最少我們會知道它們的導數是什麽 Dialogue: 0,0:00:07.92,0:00:09.84,Default,,0000,0000,0000,,好吧首先我們先看三角函數 Dialogue: 0,0:00:09.84,0:00:15.53,Default,,0000,0000,0000,,如果我們把sin x對x微分 Dialogue: 0,0:00:15.53,0:00:18.57,Default,,0000,0000,0000,,將會是cos x Dialogue: 0,0:00:18.57,0:00:21.07,Default,,0000,0000,0000,,如果你看看圖像,將會更容易理解 Dialogue: 0,0:00:21.07,0:00:22.76,Default,,0000,0000,0000,,重申一次我們不會在這證明它們 Dialogue: 0,0:00:22.76,0:00:24.14,Default,,0000,0000,0000,,但有必要知道它們是什麽 Dialogue: 0,0:00:24.14,0:00:26.81,Default,,0000,0000,0000,,好吧sin x的導數是cos x Dialogue: 0,0:00:26.81,0:00:29.37,Default,,0000,0000,0000,,那cos x呢? Dialogue: 0,0:00:29.37,0:00:34.46,Default,,0000,0000,0000,,cos x對x微分會是? Dialogue: 0,0:00:34.46,0:00:38.33,Default,,0000,0000,0000,,是負sin x Dialogue: 0,0:00:38.33,0:00:40.00,Default,,0000,0000,0000,,sin的導數是cos Dialogue: 0,0:00:40.00,0:00:42.64,Default,,0000,0000,0000,,cos的導數是 -sin Dialogue: 0,0:00:42.64,0:00:49.81,Default,,0000,0000,0000,,最後tan呢? Dialogue: 0,0:00:49.81,0:00:56.67,Default,,0000,0000,0000,,會是 1/ (cos^2 x) Dialogue: 0,0:00:56.67,0:01:01.80,Default,,0000,0000,0000,,即 sec^2 x Dialogue: 0,0:01:01.80,0:01:05.22,Default,,0000,0000,0000,,這些都很重要哦 Dialogue: 0,0:01:05.22,0:01:07.57,Default,,0000,0000,0000,,好吧再看看指數 Dialogue: 0,0:01:07.57,0:01:08.90,Default,,0000,0000,0000,,和對數 Dialogue: 0,0:01:08.90,0:01:10.48,Default,,0000,0000,0000,,e^x 的導數 Dialogue: 0,0:01:10.48,0:01:13.77,Default,,0000,0000,0000,,是微分中最酷的一個結果之一 Dialogue: 0,0:01:13.77,0:01:17.59,Default,,0000,0000,0000,,要知道 e 究竟有多重要 Dialogue: 0,0:01:17.59,0:01:19.89,Default,,0000,0000,0000,,e^x 對x微分 Dialogue: 0,0:01:19.89,0:01:21.26,Default,,0000,0000,0000,,我們要一點背景音樂來迎接這結果 Dialogue: 0,0:01:21.26,0:01:23.52,Default,,0000,0000,0000,,因為不但是微積分,也可能是數學中最酷的結果之一 Dialogue: 0,0:01:23.52,0:01:27.50,Default,,0000,0000,0000,,e^x的導數是e^x Dialogue: 0,0:01:27.50,0:01:28.63,Default,,0000,0000,0000,,這個答案告訴我們什麽呢? Dialogue: 0,0:01:28.63,0:01:30.26,Default,,0000,0000,0000,,等一下 Dialogue: 0,0:01:30.26,0:01:31.68,Default,,0000,0000,0000,,接下來將很刺激 Dialogue: 0,0:01:31.68,0:01:33.52,Default,,0000,0000,0000,,如果我們把e^x畫在圖上 Dialogue: 0,0:01:33.52,0:01:35.48,Default,,0000,0000,0000,,這是y軸 Dialogue: 0,0:01:35.48,0:01:40.62,Default,,0000,0000,0000,,x軸 Dialogue: 0,0:01:40.62,0:01:43.27,Default,,0000,0000,0000,,如果我們有個非常負的x值 Dialogue: 0,0:01:43.27,0:01:46.72,Default,,0000,0000,0000,,負得十分接近 0 Dialogue: 0,0:01:46.72,0:01:49.33,Default,,0000,0000,0000,,亦即e^0,即是1 Dialogue: 0,0:01:49.33,0:01:50.67,Default,,0000,0000,0000,,所以這裹是 1 Dialogue: 0,0:01:50.67,0:01:53.21,Default,,0000,0000,0000,,大約是這樣 Dialogue: 0,0:01:53.21,0:01:54.46,Default,,0000,0000,0000,,指數一樣 Dialogue: 0,0:01:54.46,0:01:56.94,Default,,0000,0000,0000,,增加得 Dialogue: 0,0:01:56.94,0:01:58.90,Default,,0000,0000,0000,,十分十分十分快 Dialogue: 0,0:01:58.90,0:02:01.94,Default,,0000,0000,0000,,這是 y= e^x的圖 Dialogue: 0,0:02:01.94,0:02:05.51,Default,,0000,0000,0000,,這告訴我們的是無論在哪一點 Dialogue: 0,0:02:05.51,0:02:07.21,Default,,0000,0000,0000,,例如這裹 Dialogue: 0,0:02:07.21,0:02:10.57,Default,,0000,0000,0000,,當x = 0,e^0 Dialogue: 0,0:02:10.57,0:02:15.23,Default,,0000,0000,0000,,即 1,在這裹的切線的斜線是? Dialogue: 0,0:02:15.23,0:02:17.38,Default,,0000,0000,0000,,將會是 1 Dialogue: 0,0:02:17.38,0:02:18.26,Default,,0000,0000,0000,,很神奇吧 Dialogue: 0,0:02:18.26,0:02:24.02,Default,,0000,0000,0000,,如果 x = 1 Dialogue: 0,0:02:24.02,0:02:30.41,Default,,0000,0000,0000,,即 e^1,即e Dialogue: 0,0:02:30.41,0:02:32.78,Default,,0000,0000,0000,,這裹的切線的斜率是? Dialogue: 0,0:02:32.78,0:02:34.20,Default,,0000,0000,0000,,是e Dialogue: 0,0:02:34.20,0:02:37.92,Default,,0000,0000,0000,,在不論何處 Dialogue: 0,0:02:37.92,0:02:40.78,Default,,0000,0000,0000,,它的切線的斜率都是函數的值 Dialogue: 0,0:02:40.78,0:02:42.66,Default,,0000,0000,0000,,這十分神奇 Dialogue: 0,0:02:42.66,0:02:44.87,Default,,0000,0000,0000,,這就是e的神奇之處 Dialogue: 0,0:02:44.87,0:02:46.73,Default,,0000,0000,0000,,不過這不是這影片的重點 Dialogue: 0,0:02:46.73,0:02:49.06,Default,,0000,0000,0000,,這影片是要告訴你常見函數的 Dialogue: 0,0:02:49.06,0:02:51.86,Default,,0000,0000,0000,,導數 Dialogue: 0,0:02:51.86,0:02:54.05,Default,,0000,0000,0000,,好吧最後了 Dialogue: 0,0:02:54.05,0:02:55.94,Default,,0000,0000,0000,,自然對數(Natural log)(ln) Dialogue: 0,0:02:55.94,0:03:02.89,Default,,0000,0000,0000,,對x微分會是 Dialogue: 0,0:03:02.89,0:03:04.67,Default,,0000,0000,0000,,同樣的神奇 Dialogue: 0,0:03:04.67,0:03:09.45,Default,,0000,0000,0000,,這會是 1/x,或x的負一次方 Dialogue: 0,0:03:09.45,0:03:12.44,Default,,0000,0000,0000,,所以 ln Dialogue: 0,0:03:12.44,0:03:14.69,Default,,0000,0000,0000,,可以算是填補了 Dialogue: 0,0:03:14.69,0:03:16.67,Default,,0000,0000,0000,,積法則 Dialogue: 0,0:03:16.67,0:03:19.92,Default,,0000,0000,0000,,的空隙 Dialogue: 0,0:03:19.92,0:03:22.01,Default,,0000,0000,0000,,即有什麽函數的導數會是 Dialogue: 0,0:03:22.01,0:03:23.65,Default,,0000,0000,0000,,1/x? Dialogue: 0,0:03:23.65,0:03:26.00,Default,,0000,0000,0000,,冪法則告訴我們有一些函數的導數 Dialogue: 0,0:03:26.00,0:03:28.16,Default,,0000,0000,0000,,會是 x 的負二次方,負三次方等 Dialogue: 0,0:03:28.16,0:03:30.33,Default,,0000,0000,0000,,或x 的二次方,五次方等 Dialogue: 0,0:03:30.33,0:03:33.01,Default,,0000,0000,0000,,但留白了 x 的負一次方這個導數 Dialogue: 0,0:03:33.01,0:03:34.94,Default,,0000,0000,0000,,而 ln x的導數就填補了它 Dialogue: 0,0:03:34.94,0:03:36.25,Default,,0000,0000,0000,,現在我們沒有證明它 Dialogue: 0,0:03:36.25,0:03:38.00,Default,,0000,0000,0000,,我只是列表形式的列了它們出來 Dialogue: 0,0:03:38.00,0:03:39.92,Default,,0000,0000,0000,,在未來的影片中我們會用到它們 Dialogue: 0,0:03:39.92,0:03:41.07,Default,,0000,0000,0000,,並會證明它們 Dialogue: 0,0:03:41.07,0:03:44.00,Default,,0000,0000,0000,,(這課很輕鬆,只是把五個函數的導數背下來就可以囉! Translated by R)