1 00:00:00,000 --> 00:00:00,660 大家好 2 00:00:00,660 --> 00:00:02,570 這影片中我們會去看看一些常見函數 3 00:00:02,570 --> 00:00:03,920 的導數 4 00:00:03,920 --> 00:00:05,753 我們不會證明它們 5 00:00:05,753 --> 00:00:07,920 但最少我們會知道它們的導數是什麽 6 00:00:07,920 --> 00:00:09,836 好吧首先我們先看三角函數 7 00:00:09,836 --> 00:00:15,530 如果我們把sin x對x微分 8 00:00:15,530 --> 00:00:18,571 將會是cos x 9 00:00:18,571 --> 00:00:21,070 如果你看看圖像,將會更容易理解 10 00:00:21,070 --> 00:00:22,760 重申一次我們不會在這證明它們 11 00:00:22,760 --> 00:00:24,135 但有必要知道它們是什麽 12 00:00:24,135 --> 00:00:26,810 好吧sin x的導數是cos x 13 00:00:26,810 --> 00:00:29,370 那cos x呢? 14 00:00:29,370 --> 00:00:34,460 cos x對x微分會是? 15 00:00:34,460 --> 00:00:38,330 是負sin x 16 00:00:38,330 --> 00:00:40,000 sin的導數是cos 17 00:00:40,000 --> 00:00:42,640 cos的導數是 -sin 18 00:00:42,640 --> 00:00:49,810 最後tan呢? 19 00:00:49,810 --> 00:00:56,670 會是 1/ (cos^2 x) 20 00:00:56,670 --> 00:01:01,800 即 sec^2 x 21 00:01:01,800 --> 00:01:05,220 這些都很重要哦 22 00:01:05,220 --> 00:01:07,570 好吧再看看指數 23 00:01:07,570 --> 00:01:08,897 和對數 24 00:01:08,897 --> 00:01:10,480 e^x 的導數 25 00:01:10,480 --> 00:01:13,770 是微分中最酷的一個結果之一 26 00:01:13,770 --> 00:01:17,590 要知道 e 究竟有多重要 27 00:01:17,590 --> 00:01:19,886 e^x 對x微分 28 00:01:19,886 --> 00:01:21,260 我們要一點背景音樂來迎接這結果 29 00:01:21,260 --> 00:01:23,520 因為不但是微積分,也可能是數學中最酷的結果之一 30 00:01:23,520 --> 00:01:27,505 e^x的導數是e^x 31 00:01:27,505 --> 00:01:28,630 這個答案告訴我們什麽呢? 32 00:01:28,630 --> 00:01:30,255 等一下 33 00:01:30,255 --> 00:01:31,680 接下來將很刺激 34 00:01:31,680 --> 00:01:33,520 如果我們把e^x畫在圖上 35 00:01:33,520 --> 00:01:35,480 這是y軸 36 00:01:35,480 --> 00:01:40,620 x軸 37 00:01:40,620 --> 00:01:43,270 如果我們有個非常負的x值 38 00:01:43,270 --> 00:01:46,720 負得十分接近 0 39 00:01:46,720 --> 00:01:49,330 亦即e^0,即是1 40 00:01:49,330 --> 00:01:50,670 所以這裹是 1 41 00:01:50,670 --> 00:01:53,210 大約是這樣 42 00:01:53,210 --> 00:01:54,460 指數一樣 43 00:01:54,460 --> 00:01:56,940 增加得 44 00:01:56,940 --> 00:01:58,900 十分十分十分快 45 00:01:58,900 --> 00:02:01,940 這是 y= e^x的圖 46 00:02:01,940 --> 00:02:05,510 這告訴我們的是無論在哪一點 47 00:02:05,510 --> 00:02:07,210 例如這裹 48 00:02:07,210 --> 00:02:10,570 當x = 0,e^0 49 00:02:10,570 --> 00:02:15,230 即 1,在這裹的切線的斜線是? 50 00:02:15,230 --> 00:02:17,380 將會是 1 51 00:02:17,380 --> 00:02:18,260 很神奇吧 52 00:02:18,260 --> 00:02:24,020 如果 x = 1 53 00:02:24,020 --> 00:02:30,406 即 e^1,即e 54 00:02:30,406 --> 00:02:32,780 這裹的切線的斜率是? 55 00:02:32,780 --> 00:02:34,200 是e 56 00:02:34,200 --> 00:02:37,920 在不論何處 57 00:02:37,920 --> 00:02:40,780 它的切線的斜率都是函數的值 58 00:02:40,780 --> 00:02:42,660 這十分神奇 59 00:02:42,660 --> 00:02:44,870 這就是e的神奇之處 60 00:02:44,870 --> 00:02:46,730 不過這不是這影片的重點 61 00:02:46,730 --> 00:02:49,060 這影片是要告訴你常見函數的 62 00:02:49,060 --> 00:02:51,860 導數 63 00:02:51,860 --> 00:02:54,050 好吧最後了 64 00:02:54,050 --> 00:02:55,940 自然對數(Natural log)(ln) 65 00:02:55,940 --> 00:03:02,890 對x微分會是 66 00:03:02,890 --> 00:03:04,670 同樣的神奇 67 00:03:04,670 --> 00:03:09,450 這會是 1/x,或x的負一次方 68 00:03:09,450 --> 00:03:12,440 所以 ln 69 00:03:12,440 --> 00:03:14,690 可以算是填補了 70 00:03:14,690 --> 00:03:16,670 積法則 71 00:03:16,670 --> 00:03:19,915 的空隙 72 00:03:19,915 --> 00:03:22,010 即有什麽函數的導數會是 73 00:03:22,010 --> 00:03:23,650 1/x? 74 00:03:23,650 --> 00:03:26,000 冪法則告訴我們有一些函數的導數 75 00:03:26,000 --> 00:03:28,160 會是 x 的負二次方,負三次方等 76 00:03:28,160 --> 00:03:30,330 或x 的二次方,五次方等 77 00:03:30,330 --> 00:03:33,010 但留白了 x 的負一次方這個導數 78 00:03:33,010 --> 00:03:34,940 而 ln x的導數就填補了它 79 00:03:34,940 --> 00:03:36,250 現在我們沒有證明它 80 00:03:36,250 --> 00:03:38,000 我只是列表形式的列了它們出來 81 00:03:38,000 --> 00:03:39,925 在未來的影片中我們會用到它們 82 00:03:39,925 --> 00:03:41,070 並會證明它們 83 00:03:41,070 --> 00:03:44,000 (這課很輕鬆,只是把五個函數的導數背下來就可以囉! Translated by R)