1 00:00:00,650 --> 00:00:02,936 Caro Nickelodeon, ho accettato che i pantaloni di Sponge Bob 2 00:00:02,936 --> 00:00:05,973 non sono in realtà quadrati, posso ignorare per la maggior parte del tempo 3 00:00:05,973 --> 00:00:08,275 che la conchiglia di Gary non è una spirale logaritmica, però quello che io 4 00:00:08,275 --> 00:00:11,845 non posso perdonare è che la casa ananas di Sponge Bob 5 00:00:11,845 --> 00:00:14,515 è un'impossibilità matematica! 6 00:00:14,515 --> 00:00:17,451 Ci sono tre semplici modi per trovare spirali su un ananas. 7 00:00:17,451 --> 00:00:19,620 Ci sono quelle che salgono verso destra, quelle 8 00:00:19,620 --> 00:00:21,421 che fanno una spirale verso sinistra, e quelle che 9 00:00:21,421 --> 00:00:23,311 salgono quasi dritto. Parola chiave: quasi. 10 00:00:23,311 --> 00:00:25,592 Se si conta il numero di spirali che vanno a sinistra e il numero 11 00:00:25,592 --> 00:00:28,729 di spirali che vanno a destra, essi saranno numeri di Fibonacci adiacenti. 12 00:00:28,729 --> 00:00:30,797 Tre e cinque, o cinque e otto, otto e tredici anni, 13 00:00:30,797 --> 00:00:32,833 o tredici e ventuno. 14 00:00:32,833 --> 00:00:35,769 Tu sostieni che Sponge Bob SquarePants vive 15 00:00:35,769 --> 00:00:39,206 un ananas sotto il mare, ma è davvero così? 16 00:00:39,206 --> 00:00:41,675 Un ananas vero avrebbe spirali di Fibonacci, quindi 17 00:00:41,675 --> 00:00:44,511 diamo un'occhiata. Dato che queste immagini della sua casa 18 00:00:44,511 --> 00:00:46,529 non ci lasciano prenderlo e girarlo per contare 19 00:00:46,529 --> 00:00:48,855 il numero di spirali che girano intorno ad esso, potrebbe essere difficile 20 00:00:48,855 --> 00:00:51,552 capire se è matematicamente un ananas o no 21 00:00:51,552 --> 00:00:55,422 ma c'è un indizio enorme nella terza spirale, quella che va verso l'alto 22 00:00:55,422 --> 00:00:57,748 In questo ananas, ce ne sono otto a destra, 23 00:00:57,748 --> 00:01:00,494 tredici a sinistra, si possono aggiungere questi numeri insieme 24 00:01:00,494 --> 00:01:03,430 per ottenere quante ce ne sono nella serie di spirali che salgono dritte verso l'alto. 25 00:01:03,430 --> 00:01:05,532 In questo caso, ventuno. 26 00:01:05,532 --> 00:01:08,035 Le tre serie di spirali in qualsiasi ananas sono praticamente 27 00:01:08,035 --> 00:01:10,604 sempre numeri di Fibonacci adiacenti. I rari casi diversi 28 00:01:10,604 --> 00:01:12,739 potrebbero mostrare numeri di Lucas o qualcosa del genere, 29 00:01:12,739 --> 00:01:15,042 ma saranno sempre tre numeri adiacenti in una serie 30 00:01:15,042 --> 00:01:18,545 Quello che non avrai mai è lo stesso numero di spirali 31 00:01:18,545 --> 00:01:22,215 in entrambi i modi. Gli ananas, a differenza delle persone, non sono bilateralmente 32 00:01:22,215 --> 00:01:24,685 simmetrici. Non accadrà mai che la terza spirale non sia 33 00:01:24,685 --> 00:01:28,021 una spirale ma solo una linea retta che sale sull'ananas. 34 00:01:28,021 --> 00:01:31,425 Eppure, quando guardiamo alla supposta ananas di Sponge Bob 35 00:01:31,425 --> 00:01:35,128 sotto il mare, ha chiaramente le linee dell'ananas che vanno 36 00:01:35,128 --> 00:01:38,432 verso l'alto. Ha chiaramente la simmetria bilaterale. 37 00:01:38,432 --> 00:01:42,736 Quindi non è in realtà del tutto un ananas, perché nessun 38 00:01:42,736 --> 00:01:45,339 ananas potrebbe crescere in questo modo. 39 00:01:45,339 --> 00:01:48,089 Nickelodeon, devi guardarti a lungo e seriamente allo specchio 40 00:01:48,089 --> 00:01:49,725 e pensare al modo in cui stai falsificando 41 00:01:49,725 --> 00:01:52,346 l'universo ai tuoi telespettatori. Questo tipo di svista 42 00:01:52,346 --> 00:01:54,648 matematica è semplicemente irresponsabile. 43 00:01:54,648 --> 00:01:58,000 Sinceramente, Vi Hart.