"Liz's matematik prøve indeholdt et spørgsmål om, hvor mange timer eleverne havde brugt på at forberede sig til prøven. Punktplottet nedenfor viser sammenhængen mellem antal timer brugt på forberedelse og scoren i prøven. En tendenslinje blev indsat for at modellere sammenhængen." De fortæller os ikke, hvordan linjen blev tilpasset, men den ser ud til at passe ret godt, hvis jeg blot bruger øjemål. "Hvilken af disse lineær ligninger beskriver bedst den viste model?" Dette punkt her viser, at en elev fortalte, han forberedte sig lidt over en halv time og det gik ikke så godt til prøven. Det ser ud til han kun fik 43 eller 44. Dette punkt viser, at en elev sagde, han forberedte sig i 2 timer og det ser ud til han fik omkring 64 eller 65 på prøven. Her over ser det ud til at en elev, der forberedte sig over 4 timer, eller sagde de gjorde, fik 95 eller 96 på prøven. Hvert af disse punkter repræsenterer altså en elev og dernæst tilpassede de denne linje. Når de spørger, hvilken af disse ligninger beskriver bedst den viste model, så mener de, hvilken af disse lineære ligninger er afbildet som denne linje, der forsøger at vise tendensen af disse data. Vi skal derfor blot bestemme ligningen for denne linje. Det ser ud til, at skæring med y-aksen er 20. Det ser også ud til at alle mulighederne har en skæring med y-aksen på 20, så det hjælper os ikke. Lad os se bestemme hældningen. Når vi stiger med 1 langs x-aksen, så ændringen i x er 1, hvad er vores ændring i y? Vi gik fra 20 til 40, så vi gik 20 op. Vores ændring i y over ændring i x --for denne linje, der viser tendensen af disse data-- er 20/1. Det er vores hældning. Ud af alle disse muligheder er der kun én med en hældning på 20. Det må derfor være denne valgmulighed. Brug ligningen til anslå, hvilken score en elev der forberedte sig i 3,8 timer fik. Vi kan finde 3,8 lige her, så kan vi anslå vores score ved at gå lodret op og se hvor vi skærer linjen. Det ser ud til de vil få en ret høj score. Lad os gå hen til den lodrette akse. Det ser ud til, de vil få omkring 97. Jeg skriver, at jeg anslår de vil få 97, når denne model bruges. Husk, det er kun en model. Der er ingen garanti for at en person, der forbereder sig i 3,8 timer får 97, men det er det man med rimelighed kan forvente, når det antages at forberedelestid er den variabel der er den afgørende. Men du skal være forsigtig med modeller, da du kan fristes til at tro hvis du fortsætter og forbereder dig i 9 timer, så får du 200 i prøven, selvom det er umuligt. Du skal altid være forsigtig, når du ekstrapolerer med modeller og tage svaret med et gran salt. Det er blot en model der forsøger at vise tendensen i disse data og du kan muligvis bruge den til at anslå nogle ting eller til at få nogle forventninger, men tag det med et gran salt.