ဒါက သပ်သပ်ရပ်ရပ် စီစဉ်ထားတဲ့ ကိန်း အပုံလိုက်ကြီးနှယ် ပုံပေါ်နိုင်ပါတယ်၊ ဒါပေမဲ့၊ ဒါဟာ တကယ်တော့ သင်္ချာဆိုင်ရာ ရတနာသိုက် တစ်ခုပါ။ အိန္ဒိယ သင်္ချာပညာရှင်တွေက ဒါကို မေရုတောင်ရဲ့ လှေကားထစ်များလို့ ခေါ်ပါတယ်။ အီရန်မှာ၊ ဒါက Khayyam တြိဂံပါ။ ပြီးတော့ တရုတ်မှာ၊ ဒါက Yang Hui ရဲ့ တြိဂံပါ။ အနောက်တိုင်းကမ္ဘာ အများစုအတွက်တော့ ပြင်သစ်သင်္ချာ ပညာရှင် Blaise Pascal အမည်အစွဲပြုကာ ဒါကို Pascal's Triangle လို့ခေါ်တာ နောက်မှမွေးပြီး ကိုဦးလို့ အမည်ပေးသလို တစိတ်တော့ လွန်လေမလားပဲ၊ ဒါပေမဲ့ သူ အများကြီး ပါဝင်ဆောက်ရွက်ထားခဲ့ရတာပါ။ ဒါဆို တကမ္ဘာလုံးက သင်္ချာပညာရှင်တွေကို ဖမ်းစားနိုင်လွန်းတာ ဘယ်လို အချက်မျိုးပါလဲ။ အချုပ်အားဖြင့်၊ ဒါက ပုံစံကွဲ အသွယ်သွယ်နဲ့ လျို့ဝှက်ချက်တွေ ရှိတာပါ။ ပထမဦးစဆုံး ဒါကို ပေါ်ထွက်လာစေတဲ့ ပုံစံရှိပါတယ်။ စ စခြင်း တစ်နဲ့ ၎င်းရဲ့ တဘက်တချက်စီက သုညတွေကို စိတ်ကူးကြည့်ပါ။ သူတို့ကို တစ်စုံချင်းတွဲလို့ ပေါင်းပါက နောက် အတန်း တစ်တန်း ရပါလိမ့်မယ်။ အခု၊ ဒါကိုပဲ အထပ်ထပ် လုပ်ပါ။ ဆက်လုပ်သွားလိုက်ပါ၊ တကယ်တော့ ပါစကယ် တြိဂံဟာ အန္တတိုင်ရှိပေမဲ့လည်း ဒီလိုမျိုးနဲ့ သင် အဆုံးသတ်ပါလိမ့်မယ်။ အခု အတန်း တစ်တန်းစီမှာ (x+y)^n ပုံစံရှိ ဒွိနာမကိန်းတွဲ ဖြန့်စီခြင်းရဲ့ မြောက်ဖော်ကိန်း ဆိုတာတွေ ရပါပြီ၊ ဒီမှာ n ဟာ အတန်း အရေအတွက်ဖြစ်ပြီး တို့တွေ ရေတွက်ခြင်းကို သုညမှ စရေပါမယ်။ ဒီတော့၊ n = 2 နဲ့ညီပြီး ဒါကို ဖြန့်ရင် သင် ရမှာ (x^2) + 2xy + (y^2) ပါ။ မြောက်ဖော်ကိန်းတွေ သို့မဟုတ် ကိန်းရှင်တွေရဲ့ ရှေ့မှ ကိန်းတွေဟာ ပါစကယ် တြိဂံရဲ့ အတန်းတစ်ခုမှာရှိတဲ့ ကိန်းတွေ အတိုင်းပါပဲ။ n = 3 ထားပြီး ဒီလို ဖြန့်ပါက အတူတူပဲ ဖြစ်နေအုံးမှာပါ။ ဒီတြိဂံဟာ ဒီမြောက်ဖော်ကိန်းတွေကို ကြည့်ဖို့ လျင်မြန်၊ လွယ်ကူတဲ့ နည်းလမ်းပါ။ ဒါပေမဲ့ ဒီထက်ပိုပါတယ်။ ဥပမာ၊ အတန်းတစ်ခုစီက ကိန်းတွေကို ပေါင်းပါ၊ ဒါဆို နှစ်ကို အစဉ်လိုက် ပါဝါတင်ပြီးသားတွေကို ရလာပါလိမ့်မယ်။ ဒါမှမဟုတ် အတန်းတစ်တန်းက ကိန်းတစ်လုံးစီကို နေရာအလိုက် ဖြန့်ချလိုက်ပါ။ တနည်းအာဖြင့်၊ ဒုတိယ အတန်းက (1x1) + (2x10) + (1x100) ဖြစ်ပါတယ်။ သင် ရမှာ 121၊ ဒါက 11^2 ပါ။ ဆဌမအတန်းမှ ကိန်းကို ဒါမျိုးလုပ်တဲ့အခါ ဘာဖြစ်မလဲ ကြည့်ရအောင်။ ပေါင်းလဒ်က 1,771,561မို့ ဒါက 11^6.. စသည်ဖြင့် ရှေ့ဆက်နိုင်ပါတယ်။ ဂျီဩမေတြိဆိုင်ရာ အသုံးတွေလည်း ရှိပါတယ်။ ထောင့်တန်းလိုင်းတွေကို ကြည့်ပါ။ ပထမနှစ်တန်းဟာ တစ်တွေချည်းပဲရယ်၊ သဘာ၀ကိန်း ဝါ အပေါင်းကိန်းပြည့်တွေရယ်မို့ သိပ်စိတ်ဝင်စား စရာမကောင်းပါဘူး။ ဒါပေမဲ့ နောက်ထပ် ထောင့်တန်းလိုင်းက ကိန်းတွေကိုတော့ တြိဂံဆိုင်ရာ ကိန်းတွေ လို့ခေါ်ပါတယ်။ အကြောင်းက ဒီ အလုံးတွေ အများကြီး ယူလိုက်ရင် ဒါတွေကို သုံးနားညီ တြိဂံတွေအဖြစ် ထပ်နိုင်လို့ပါ။ နောက်က ထောင့်တန်းလိုင်းမှာ လေးမျက်နှာဒုချွန်ကိန်းတွေ ရှိပါတယ် ဆင်တူတာကြောင့်၊ ဒီစက်လုံး များစွာကို လေးမျက်နှာဒုချွန်အဖြစ် ထပ်နိုင်ပါတယ်။ သို့မဟုတ်၊ မကိန်းတွေအားလုံးကို ပုံဖော်လိုက်ရင် ဘယ်နှယ့်ရှိစ။ တြိဂံမှာ အတန်းနည်းတဲ့အခါ ဒါက ပုံ သိပ်မပေါ်ပေမဲ့ အတန်းတွေ ထောင်ချီလာရင်တော့ ဂျီဩမေတြီအရ ပုံစံ ထပ်ကြိမ်ပြုချက် ရလာမှာပါ ဒါကို Sierpinski's Triangle လို့ခေါ်ပါတယ်။ ဒီတြိဂံတွေက သင်္ချာဆိုင်ရာ အနုပညာဖြစ်ရုံသာမက၊ ၎င်းက အသုံးလည်း သိပ်ဝင်ပါတယ် အထူးအားဖြင့် ဖြစ်တန်စွမ်းရယ်၊ ကိန်းရွေးခြယ် စီစဉ်နိုင်တဲ့ နည်းလမ်း အရေအတွက်ရယ်ကို တွက်ချက်မှုပြုလုပ်ချိန်မှာပါ။ သင်က ကလေးငါးယောက် ယူချင်တယ် ပြီးတော့ မ ၃၊ ကျား ၂ ရဖို့ သင့်.. စိတ်ကူးယဉ် မိသားစုရဲ့ ဖြစ်တန်းစွမ်းကို သိခြင်တယ် ဆိုပါတော့။ ဒွိနာမကိန်းတွဲ ဖြန့်စီခြင်းအရ မ အပေါင်း ကျား၊ ဒါကို တစ်ကွင်းလုံး ငါးထပ် တင်ပါ့မယ်။ ဒီတော့ ပဉ္စမမြောက်အတန်းထံ ရှု့ပါ အဲဒီမှာ ပထမကိန်းက မ ငါးယောက်၊ နောက်ဆုံးမှာက ကျား ငါးယောက်ဖြစ်လာမယ်။ တတိယကိန်းဟာ ကျွန်တော်တို့ ရှာနေတဲ့ အရာ ပါပဲ။ အတန်းထဲက ဖြစ်တန်စွမ်းတွေ အားလုံးရဲ့ ပေါင်းလဒ်အပေါ် တစ်ဆယ်ကို တည်ပါ။ ဒီတော့ 10/32, ဝါ 31.25% ပါ။ သင့် သူငယ်ချင်း ဆယ့်နှစ်ယောက် အဖွဲ့ထဲက ကစားသမား ငါးဦးပါတဲ့ ဘက်စကတ်ဘော- တစ်သင်းစာ ကျပန်းရွေးထုတ်ရင် ငါးယောက်တဖွဲ့ အဖွဲ့ဘယ်လောက်များ ဒီထဲက ရွေးထုတ်နိုင်မှာလဲ။ ကိန်းရွေးခြယ် စီစဉ်နည်းအရ၊ ဒီပုစ္ဆာကို ဆယ့်နှစ်ဦးထဲက ငါးဦးရွေးတယ်လို့ ပြောနိုင်လိမ့်မယ်၊ ဒီ ပုံသေနည်းသုံးလျက် တွက်နိုင်တယ်၊ ဒါမှမဟုတ် တြိဂံပေါ်က ဆယ့်နှစ်တန်းမြောက်မှာ ခြောက်ခုမြောက်က ရှိတာကို ကြည့်ရုံနဲ့ အဖြေရပါတယ်။ ပါစကယ်ရဲ့ တြိဂံထဲက ပုံစံတွေဟာ သင်္ချာပညာရပ်ရဲ့သပ်ရပ်စွာ ရက်ဖောက်ထားတဲ့ အစိတ်အပိုင်းအတွက် အထောက်အထားတစ်ခုပါ။ ပြီးတော့၊ လျှို့ဝှက်ချက် အသစ်များစွာကို ယနေ့ထိ ဖော်ထုတ်နေဆဲဖြစ်ပါတယ်။ ဥပမာ၊ သင်္ချာပညာရှင်တွေက ဒီလိုမျိုး ဗဟုကိန်းတန်းတွေကို ဖြန့်စီဖို့ရာ မကြာမီက နည်းလမ်းရှာတွေ့ခဲ့ပါတယ်။ နောက်ထပ် တို့ရှာတွေ့မှာ ဘာဖြစ်လာမလဲ။ ဟုတ်ပြီ၊ ဒါက သင့်အပေါ် မူတည်ပါတယ်။