Chinese, Simplified subtítulos

← 到底哪个投票制度才是最好的?Alex Gendler

查看完整课程:https://ed.ted.com/lessons/which-voting-system-is-the-best-alex-gendler

假如我们想在四个最新的火星基地之一建立一个新的太空港,并通过投票来决定新太空港的地点。在火星上的 100 名殖民地居民中,有 42 位住在西基地,26 位住在北基地,15 位住在南基地,17 位住在东基地。假设所有人都希望太空港离他们的基地越近越好,怎样举行投票才是最公平的?Alex Gendler 对不同的投票制度进行了探究。

课程由 Alex Gendler 解说,Biljana Labovic 导演。

Obtener código incrustado.
28 idiomas

Mostrar Revisión7 creada 06/13/2020 por Yolanda Zhang.

  1. 假如我们想在四个最新的火星基地
  2. 建立一个新的太空港,
  3. 并通过投票来决定
    新太空港的地点。
  4. 在火星上的 100 名殖民地居民中,
    有 42 位住在西基地,26 位住在北基地,
  5. 15 位住在南基地,17 位住在东基地。
  6. 介于此次的目的,
    先假设所有人都希望
  7. 太空港离他们的基地越近越好,
    并且会以此为参考进行投票。
  8. 怎样举行投票才是最公平的?
  9. 最直接的方案
    就是让每一个人投一票,

  10. 然后选出得票最多的地点。
  11. 这就是多数制(plurality voting),
    或“领先者当选”(first past the post)。
  12. 在这个情况下,
    西基地很容易胜出,
  13. 因为那里的居民多于其他的基地。
  14. 可是,大多数的居民会认为
    这是最差的结果,
  15. 因为西基地离其他所有人都很远。
  16. 那么,多数制投票
    真的是最公平的方法吗?
  17. 我们是否也可以尝试
    “排序复选制”(instant runoff voting),

  18. 即考虑大家所有的偏向,
  19. 而不只是他们的第一选择?
  20. 排序复选制的规则是这样的:
  21. 首先,投票者将
    把他们的选择按优先级排序,
  22. 我们会比较他们的第一选择。
  23. 南基地收到的投票最少,
    所以最先将它排除。
  24. 投给它的 15 票会被重新分配给
    投票者的第二选择——
  25. 东基地——那么它的总票数会是 32。
  26. 然后,我们再次比较
    首选并且排除最后一名。
  27. 这次北基地会被排除。
  28. 该基地居民的第二选择
    本来会是南基地,
  29. 但是南基地已经被排除了,
    票数会分配到他们的第三选择。
  30. 这样,东基地 58 票比西基地 42 票,
    东基地胜出。
  31. 但这似乎也不太公平。
  32. 东基地不仅一开始是倒数第二名,
  33. 并且,在大多数人的排序中,
    它都位列最后两名。
  34. 不过,我们也可以不用排名,
    而尝试改用多轮投票。

  35. 前两名的选择直接
    进入独立的决选。
  36. 通常来说,这意味着
    西和北基地在第一轮胜出,
  37. 北基地在第二轮胜出。
  38. 但是东基地的居民认识到,
  39. 虽然他们的票数不足以让他们胜出,
  40. 他们仍然可以让结果偏向他们的喜好。
  41. 在第一轮,他们投给南基地,
    而不是他们自己的东基地,
  42. 以成功地阻止北基地胜出。
  43. 因为东基地居民的“战略性投票”,
  44. 尽管拥有最少的居民,
    南基地在第二轮轻松胜出。
  45. 如果一个系统鼓励谎报偏好的话,
  46. 它还能被称为一个公平的系统吗?
  47. 也许我们需要让投票者针对
    所有可能的两两配对做出选择,

  48. 由此选出他们的喜好。
  49. 这就是康德西法
    (Condorcet method,即双序制)。
  50. 比如:西基地对北基地。
  51. 所有 100 名殖民地居民都要
    在两者中选出他们的偏好。
  52. 结果是西基地的 42 票对
    北基地的 58 票,
  53. 因为其他三个基地都偏向于北。
  54. 现在对其他五个组合也进行一样的流程,
  55. 胜出者将会是赢得最多次的基地。
  56. 北基地赢得三次,南基地两次。
  57. 它们确实是最靠近中心的地点,
  58. 并且北基地的优势是,
    它不是任何一方最排斥的选择。
  59. 那么,这意味着康德西方法
    总会是最理想的投票制度吗?

  60. 不一定。
  61. 假设在一场选举中
    有三位候选人。
  62. 如果投票者们喜欢 A 胜过 B,
    喜欢 B 胜过 C,但喜欢 C 胜过 A,
  63. 那么,这个方法就无法选出一个赢家。
  64. 数十年来,研究者
    和统计学家已经提出过

  65. 数十种复杂的方法来投票和计票,
  66. 有些甚至已经被投入实际应用。
  67. 但不论你选择哪个,
  68. 都可以想得出
    某种结果不公平的情况。
  69. 其实,我们对公平的直觉观念

  70. 已经包含了数个
    也许互相矛盾的假设。
  71. 若某些投票者的影响力
    比其他投票者大,似乎就不太公平。
  72. 但忽略少数人的偏好,
    或鼓励投票者利用制度耍小伎俩,
  73. 似乎也不公平。
  74. 事实上,已经有数学证明指出,
  75. 只要选举的选项超出两个,
  76. 那么设计出的投票制度
    就一定会违反
  77. 某些理论前提下的理想标准。
  78. 虽然我们经常认为民主
    只是数一数票那么简单的事,
  79. 但我们也应该认真思考,
    在不同的计票方式下,谁会收益。