Korean subtitles

← 컴퓨터 학습이 가져올 훌륭하고도 끔찍한 잠재적효과

우리가 컴퓨터에게 배우는 법을 가르친다면 무슨 일이 일어날까요? 기술 전문가 제레미 하워드는 빠르게 발전하는 심화 학습 분야에서 일어난 놀랍고도 새로운 개발을 공유합니다. 심화 학습은 컴퓨터한테 중국어를 배우는 능력을 주고, 사진에서 물체를 인식하게 하거나, 의료 진단를 돕도록 합니다. (유튜브를 몇 시간 본뒤에 "고양이"라는 개념을 스스로 배운 심화 학습 도구) 여러분이 생각하는 것보다 훨씬 빨리 주위의 컴퓨터를 완전히 바꿔버릴 분야를 알아봅시다.

Get Embed Code
30 Languages

Showing Revision 5 created 12/24/2014 by Jeong-Lan Kinser.

  1. 예전에는 컴퓨터가 새로운
    일을 하게 만들려면
  2. 프로그램을 짜야 했습니다.
  3. 프로그래밍을
    해본 적이 없는 분들은
  4. 목표를 달성하기 위해서
  5. 컴퓨터가 해야 할 일을 매 단계마다
  6. 고통스러울정도로 세세하게
    설정해야 합니다.
  7. 자, 하는 방법을 모르는 일을
    여러분이 하고 싶다면
  8. 그건 아주 커다란 도전이 되겠죠.
  9. 이것이 아서 사무엘이
    직면한 도전이었습니다.

  10. 1956년 그는 컴퓨터가
  11. 서양장기에서
    그를 이기기를 바랬습니다.
  12. 프로그램을 어떻게 짤 수 있을까요?
  13. 서양장기에서 여러분보다 잘하도록
    극심한 세부사항을 쓸 수 있을까요?
  14. 그는 새로운 생각을 했습니다.
  15. 컴퓨터가 스스로와 수천 번의
    서양장기를 두게 해서
  16. 서양장기 두는 법을
    배우게 했습니다.
  17. 그 방법은 정말 효과가 있었고
    사실 1962년에
  18. 이 컴퓨터는 코네티컷 주의
    우승자를 무찔렀습니다.
  19. 그래서 아서 사무엘은
    기계 학습의 아버지였고

  20. 저는 그분께 큰 빚을 지고 있죠.
  21. 왜냐하면 저는
    기계 학습 기술자이니까요.
  22. 저는 캐글의 회장인데
  23. 캐글은 20만 명이 넘는
    기계 학습 기술자들의 동호회입니다.
  24. 캐글은 이전까지 풀지 못했던 문제를
  25. 해결하기 위한 대회를 주최하는데
  26. 수백번 성공했습니다.
  27. 그래서 이런 유리한 시점에서
    저는 기계 학습이
  28. 과거와 현재에 할 수 있는 일과
    미래에 할 수 있는 일을
  29. 많이 알 수 있었습니다.
  30. 아마도 기계 학습이 상업에서 최초로
    가장 크게 성공한 것은 구글이었습니다.
  31. 구글은 컴퓨터 알고리즘을 사용해서
  32. 정보를 찾을 수 있음을 보여줬는데
  33. 이 알고리즘은 기계 학습을
    바탕으로 합니다.
  34. 그때부터 기계 학습의
    상업적 성공이 많이 있었습니다.
  35. 아마존과 넷플릭스 같은 회사들은
  36. 기계 학습을 이용해서
    여러분이 사고 싶은 상품이나
  37. 보고 싶은 영화를 제안합니다.
  38. 때로는 오싹할 지경이죠.
  39. 링크드인과 페이스북 같은 회사들은
  40. 누가 여러분의 친구인지를
    말해줄 겁니다.
  41. 어떻게 그렇게 하는지
    여러분은 모릅니다.
  42. 그 이유는 기계 학습의 힘을
    이용하기 때문이죠.
  43. 이 알고리즘은 하는 방법을
    손으로 쓴 프로그램 보다는
  44. 데이터에서 배웠습니다.
  45. IBM이 왓슨을 이용해 "제퍼디"에서

  46. 2명의 세계 챔피언을 성공적으로
    무찌른 이유이기도 합니다.
  47. 이처럼 아주 미묘하고
    복잡한 질문에 대답했죠.
  48. ["고대 '니무르드의 사자'가 2003년
    이 도시의 박물관에서 사라졌습니다."
  49. 이 때문에 우리는 이제 최초의
    무인 자동차를 볼 수 있습니다.
  50. 나무와 보행자의 차이점,
    그게 아주 중요한데
  51. 그걸 구별하고 싶을 때
  52. 손으로 프로그램을
    어떻게 써야할지 모르지만
  53. 기계 학습으로
    이제 가능합니다.
  54. 사실 이 자동차는
    일반 도로에서 사고 없이
  55. 수백만 km를 달렸습니다.
  56. 이제 우리는 컴퓨터가 배울 수 있고

  57. 우리가 실제로 하는 방법을
  58. 모르는 일도 할 수 있도록
    배울 수 있음을 압니다.
  59. 어쩌면 우리보다 잘할 수도 있어요.
  60. 기계 학습에서 가장 놀라운 예가
  61. 제가 캐글에서 하는
    프로젝트에서 일어났습니다.
  62. 토론토 대학 출신의 제프리 힌튼이
  63. 이끄는 팀은
  64. 자동 신약 개발을 위한
    대회에서 이겼습니다.
  65. 자, 여기서 놀라운 사실은
    그들이 머크 또는 국제 학회가
  66. 개발한 알고리즘을 이겼을 뿐만 아니라
  67. 어떤 팀원도 화학, 생물학, 생명과학에
    관한 지식이 없었다는 점입니다.
  68. 그들은 2주안에 완성했죠.
  69. 어떻게 했을까요?
  70. 그들은 심화 학습이라는
    놀라운 알고리즘을 사용했습니다.
  71. 이것은 사실 아주 중요해서
    몇 주가 지난 뒤
  72. 뉴욕 타임즈에서
    앞면 기사로 다뤘습니다.
  73. 왼쪽이 제프리 힌튼입니다.
  74. 심화 학습은 사람의 뇌가 작용하는
    방식에 영감을 받아서 만든
  75. 알고리즘으로 그 결과
  76. 할 수 있는 일에 대한
    이론적 한계가 없습니다.
  77. 더 많은 데이터와
    더 많은 계산 시간을 줄수록
  78. 더 좋은 결과를 냅니다.
  79. 뉴욕 타임즈는 이 기사에서

  80. 심화 학습의 또다른
    놀라운 결과를 보여줬는데
  81. 여러분께 보여드리죠.
  82. 컴퓨터가 듣고
    이해할 수 있음을 보여줍니다.
  83. (영상) 리챠드 라시드:
    제가 이 과정에서

  84. 마지막으로 보여드릴 단계는
  85. 실제 중국어로 말하는 것입니다.
  86. 중요한 점은
  87. 많은 중국인들로부터
    엄청난 양의 정보를 모을 수 있었고
  88. 글자를 음성으로 바꾸는 시스템을 만들어
  89. 중국 글자를 중국 말로 변환시키고
  90. 제 목소리를 한 시간 정도 녹음해서
  91. 표준 문자 - 음성 변환 시스템을
    조절해서
  92. 제 목소리처럼 나도록 만들었습니다.
  93. 역시 결과는 완벽하지 않습니다.
  94. 사실 오류가 상당히 있었습니다.
  95. (중국어)
  96. (박수)
  97. 아직 많은 작업이 필요합니다.
  98. (중국어)
  99. (박수)
  100. 제레미 하워드 : 중국에서 열린
    기계 학습 회의였습니다.

  101. 학술 회의에서 실제로
  102. 즉흥적인 박수를 듣기는 쉽지 않죠.
  103. 그래도 TEDx 회의에서는
    자유롭게 하세요.
  104. 거기서 본 모든 것이
    심화 학습으로 일어났습니다.
  105. (박수) 감사합니다.
  106. 영어로 옮겨쓰기는 심화 학습이었죠.
  107. 중국어 번역과 오른쪽 위의 글자도
    심화 학습이었고
  108. 목소리로 재생하는 것 역시
    심화 학습이었습니다.
  109. 그래서 심화 학습은 놀라운 것입니다.

  110. 하나의 알고리즘인데
    거의 모든 일을 할 수 있어 보입니다.
  111. 제가 1년 전에 발견했는데
    보는 법도 배웠습니다.
  112. 독일의 애매한 대회인
  113. 독일 교통 신호 인식 성능평가에서
  114. 심화 학습은 이런 교통 신호를
    인식하는 법을 배웠습니다.
  115. 교통 신호를 인식할 뿐만 아니라
  116. 어떤 알고리즘보다 낫고
  117. 성적이 사람보다 2배 정도
  118. 나은 결과를 보였습니다.
  119. 2011년 우리는 사람보다
  120. 잘 볼 수 있는 컴퓨터의
    첫번째 예를 가졌습니다.
  121. 그후로 많은 일이 일어났죠.
  122. 2012년 구글은 심화 학습 알고리즘을
    만들었다고 발표했습니다.
  123. 유튜브 동영상을 보고
  124. 한 달에 1만6천 대의
    컴퓨터 데이터를 처리해서
  125. 컴퓨터는 그냥 동영상을 보는 것만으로
    사람과 고양이 같은 개념을
  126. 스스로 학습했습니다.
  127. 사람이 배우는 방법과 비슷하죠.
  128. 사람들은 보는 것을
    알려줘서 배우는 게 아니라
  129. 그것이 뭔지 스스로 배웁니다.
  130. 또한 2012년 우리가 앞서 봤던
    제프리 힌튼은
  131. 아주 유명한 이미지넷 대회에서
    우승했는데
  132. 1백만 5천장의 사진을 보고
    그게 어떤 사진인지
  133. 맞추는 내용이죠.
  134. 2014년 이제 영상 인식에서
    6%의 오차율까지
  135. 내려갔습니다.
  136. 이것도 사람보다 낫습니다.
  137. 기계는 정말 놀라울만큼
    일을 잘하고 있고

  138. 이제 산업에서 사용됩니다.
  139. 예를 들어, 구글은 작년에
  140. 프랑스의 구석구석을 2시간 안에
    지도로 만들었다고 발표했는데
  141. 그들이 한 방법은
    길거리에서 찍은 사진을
  142. 심화 학습 알고리즘에 입력해서
    주소를 인식하고 읽게 했습니다.
  143. 이전에는 얼마나 오래 걸렸을지
    생각해보세요.
  144. 수십명의 사람들이 몇 년동안 했겠죠.
  145. 이것은 중국에서도 일어나고 있습니다.
  146. 바이두는 중국판 구글이라고
    제가 추측하는데
  147. 왼쪽 위에서 보는 것은
  148. 바이두의 심화 학습 시스템에
    제가 올린 사진의 예이고
  149. 그 아래에 그 사진이 뭔지를
    시스템이 이해하고
  150. 비슷한 사진들을 찾아놓은 것을
    볼 수 있죠.
  151. 비슷한 사진들은 실제로
    비슷한 배경과
  152. 비슷한 얼굴 방향을 갖고 있고
  153. 혀를 내민 모습도 비슷하죠.
  154. 이것은 웹페이지의 글자를
    찾은 게 아닙니다.
  155. 제가 올린 것은 사진이었죠.
  156. 이제 컴퓨터가 본 것을 정말 이해해서
  157. 수천만 장의 사진이 든
  158. 데이터베이스를 실시간으로
    찾을 수 있습니다.
  159. 컴퓨터가 볼 수 있다는 게
    무슨 의미일까요?

  160. 컴퓨터가 볼 수 있다는 것만이 아니라
  161. 사실 심화 학습은
    더 많은 일을 했습니다.
  162. 이렇게 복잡하고 미묘한 문장은
  163. 이제 심화 학습 알고리즘으로
    이해할 수 있습니다.
  164. 여기서 보듯이
  165. 위에 있는 빨간점을 보여주는
    스탠포드에 있는 시스템은
  166. 이 문장이 부정적인 느낌을
    표현하는 것을 알아냈습니다.
  167. 심화 학습은 이제 사실
    사람에 가깝게
  168. 문장을 이해하고
    그게 어떤 말을 하는지 압니다.
  169. 심화 학습은 또한
    중국어를 읽는데 사용되었고
  170. 중국어 원어민 수준입니다.
  171. 이 알고리즘은 스위스에서 개발되었는데
  172. 개발자 중 중국어를 할 수 있는 사람이
    아무도 없었습니다.

  173. 심화 학습을 사용하는 것은
  174. 사람의 이해에 비해서도
  175. 세계 최고의 시스템에 관한 것입니다.
  176. 이것은 우리가 회사에서

  177. 모든 것을 다 통합해서
    만든 시스템입니다.
  178. 이것들은 글자가 없는 사진들로서
  179. 제가 문장을 입력하면
  180. 실시간으로 그 사진들을 이해해서
  181. 그게 어떤 사진인지 알고
  182. 제가 쓰는 글에 대해
    비슷한 사진을 찾아줍니다.
  183. 보다시피 제가 쓴 글을 이해하고
  184. 이 사진들을 실제로 이해합니다.
  185. 여러분은 구글에서
    이와 비슷한 것을 봤을 텐데
  186. 여러분이 글자를 입력하면
    사진을 보여줍니다.
  187. 하지만 실제로는 그 글자가 있는
    웹페이지를 찾는 거죠.
  188. 이것은 사진을 실제로 이해하는 것과
    아주 다릅니다.
  189. 이것은 컴퓨터가 지난 몇 달동안
  190. 처음으로 할 수 있었던 일입니다.
  191. 이제 컴퓨터는 볼 수 있을 뿐만 아니라
    읽을 수도 있고

  192. 물론 들은 것도 이해할 수 있음을
    봤습니다.
  193. 컴퓨터가 쓸 줄 안다고 얘기해도
    이제는 놀라지 않으실 거에요.
  194. 이것은 심화 학습 알고리즘을 사용해서
    어제 제가 만든 글입니다.
  195. 이것은 스탠포드에서 만든
    알고리즘으로 만든 글입니다.
  196. 이 글은 각각의 사진을
  197. 설명하기 위해
    심화 학습 알고리즘이 만들었습니다.
  198. 이 알고리즘은 검은색 셔츠를 입고
    기타를 치는 남자를 본 적이 없습니다.
  199. 남자를 본 적이 있고
    검은 색을 본 적이 있고
  200. 기타를 본 적은 있어요.
  201. 그런데 스스로 이 사진을
    훌륭하게 설명했습니다.
  202. 아직도 사람보다는 못하지만
    꽤 가까이 왔습니다.
  203. 실험에서 사람들은
    컴퓨터가 만들어낸 캡션을
  204. 4회당 1회 꼴로 좋아했습니다.
  205. 이 시스템은 이제 2주가 되었는데
  206. 아마도 내년 안으로
  207. 지금 진행되는 속도로 봐서
    컴퓨터 알고리즘이
  208. 사람을 앞지를 것입니다.
  209. 컴퓨터는 쓸 수도 있습니다.
  210. 그래서 이 모든 기능을 합하면
    아주 흥미로운 기회가 생기겠죠.

  211. 예를 들어 의학에서
  212. 보스턴의 팀은 종양에서
  213. 임상적으로 관련된 수십가지의 특징을
    새롭게 발견했는데
  214. 이것으로 의사들이 암을 예측하는데
    도움을 줄 수 있습니다.
  215. 스탠포드에서도 비슷하게
  216. 한 그룹이 조직을 확대경으로 보는
  217. 기계 학습을 기반으로 한
    시스템을 개발했는데
  218. 사실 암 환자의 생존율을 예측하는데
  219. 병리학자보다 낫다고 합니다.
  220. 두 경우 모두
    예측이 더 정확할 뿐만 아니라
  221. 통찰력있는 과학을
    새로 만들어냈습니다.
  222. 방사선학의 경우
  223. 사람이 이해할 수 있는
    새로운 임상 징후가 있었습니다.
  224. 병리학의 경우
  225. 컴퓨터 시스템은 진단을 하는데
  226. 실제로 암주변의 세포가
    암 세포 만큼이나
  227. 중요하다는 사실을 발견했습니다.
  228. 이는 병리학자가 수십년동안
    가르친 사실과 반대됩니다.
  229. 각각의 경우에서 시스템은
  230. 의학 전문과와 기계 학습 전문가가
    함께 개발했지만
  231. 작년에 그걸 뛰어넘었습니다.
  232. 이것은 현미경으로 사람의 조직에서
  233. 암 조직을 밝히는 예입니다.
  234. 여기서 보는 시스템은 암 조직을
    더 정확히 판별할 수 있고
  235. 병리학자만큼이나 정확하게
    판별할 수 있지만
  236. 의학 전문가를 쓰지 않고 그 분야에
    지식이 전혀 없는 사람들이
  237. 심화 학습 만으로 만들었습니다.
  238. 마찬가지로 여기 신경 분할인데
  239. 사람만큼이나 정확하게
    신경을 분할할 수 있지만
  240. 이 시스템은 의학에
    배경지식이 없는 사람들이
  241. 심화 학습을 이용해서 만들었습니다.
  242. 그래서 저처럼 의학에
    배경지식이 없는 사람이

  243. 새로운 의료 회사를 시작하는데
    아주 적합한 사람처럼 보여서
  244. 실제로 그렇게 했죠.
  245. 공포를 느꼈지만
  246. 이론은 이런
    데이터 분석기법을 이용해서
  247. 아주 유용한 의학이 가능함을
    제시해주고 있었죠.
  248. 그리고 감사하게도
    평가는 좋았습니다.
  249. 미디어 뿐만 아니라 의학계에서도
  250. 아주 긍정적이었습니다.
  251. 그 이론은 의료 과정의 중간 부분을
    우리가 가져와서
  252. 최대한 데이터 분석을 한 뒤
  253. 의사들에게 그들이 잘하는 일을
    맡기는 거죠.
  254. 예를 보여드리겠습니다.
  255. 새로운 의료 진단 실험을 하는데
    15분쯤 걸리는데
  256. 이제 실시간으로 보여드리죠.
  257. 몇 단계를 생략해서
    3분으로 줄였습니다.
  258. 의료 진단 실험을
    하는 것을 보여주는 대신
  259. 자동차 사진의 진단 실험을
    보여드리겠습니다.
  260. 왜냐하면 우리 모두
    이해할 수 있는 거니까요.
  261. 여기서 150만 개의
    자동차 사진으로 시작하죠.

  262. 사진을 찍은 각도로
  263. 분류하는 뭔가를 만들고 싶어요.
  264. 이 사진들은 모두 제목도 없어서
    처음부터 시작해야 됩니다.
  265. 심화 학습 알고리즘으로
  266. 이 사진들의 구조를
    자동으로 구별할 수 있습니다.
  267. 좋은 점은 사람과 컴퓨터가
    함께 일할 수 있다는 거죠.
  268. 사람은 여기서 보다시피
  269. 컴퓨터한테 관심분야를 말하고
  270. 컴퓨터가 알고리즘을 개선하죠.
  271. 자, 이 심화 학습 시스템은 실제로
    1만6천 차원의 공간을 가집니다.
  272. 컴퓨터가 이것을 그 공간사이로
    회전하는 것을 볼 수 있습니다.
  273. 새로운 구조를 발견하려는 거죠.
  274. 컴퓨터가 성공적으로 끝내면
  275. 그걸 작동하는 사람은
    관심있는 분야를 가리킵니다.
  276. 여기서 컴퓨터는 그 분야를
    성공적으로 찾아냈는데
  277. 이 경우는 각도이죠.
  278. 우리가 이 과정을 거쳐가면서
  279. 컴퓨터한테 우리가 찾고 있는
    구조에 대해서
  280. 단계적으로 더 많이 말해줍니다.
  281. 진단 실험에서
  282. 병리학자가 병적 상태인 곳을
    밝혀내거나
  283. 방사선의가 문제가 있을 수 있는 혹을
    가르키는 것을 상상할 수 있습니다.
  284. 알고리즘에서 어려운 부분도 있습니다.
  285. 이 경우 약간 헷갈렸어요.
  286. 자동차의 앞과 뒤가 모두 섞여버렸죠.
  287. 그래서 여기서 좀더 주의해서
  288. 뒤가 아니라 앞을 수동으로 선택해서
  289. 컴퓨터에게 우리가 관심있는
    부분이 이 부분이라고
  290. 얘기를 해야합니다.
  291. 그래서 한동안 그 작업을 하고
    좀 더 건너뛰면

  292. 이런 수백 가지 일을 바탕으로
  293. 기계 학습 알고리즘을 훈련시켜

  294. 앞으로 더 나아지기를 바랍니다.
  295. 보다시피 시스템은 사진들 일부를
    사라지게 만들면서
  296. 이 사진들을 이해하는 법을
    이미 인식하고 있음을 보여줍니다.
  297. 우리는 비슷한 사진의 개념을 이용해서
  298. 이제 여러분이 보는 것과 같이
  299. 이 시점에서 컴퓨터는 자동차의 앞만
    찾을 수 있습니다.
  300. 이 시점에서 사람은 컴퓨터에게
  301. 좋아, 잘 했어. 라고 말할 수 있죠.
  302. 물론 어떤 경우는 이 시점에도

  303. 그룹으로 나누기가 어렵습니다.
  304. 이 경우 컴퓨터가 한동안
    이것을 회전하게 내버려둬도
  305. 왼쪽과 오른쪽이 뒤섞인 것을
  306. 볼 수 있습니다.
  307. 그래서 컴퓨터한테 다시
    힌트를 줘서
  308. 심화 학습 알고리즘을 이용해서
  309. 왼쪽과 오른쪽을 가능한 분리시키는
  310. 투사도를 찾아라고 합니다.
  311. 그 힌트를 주면 성공입니다.
  312. 이들 물체들을 분리해내는
  313. 방법을 스스로 찾은 거죠.
  314. 여기서 생각을 얻을 수 있죠.

  315. 사람이 컴퓨터로 대체되는 경우가 아니라
  316. 함께 일합니다.
  317. 우리가 여기서 하는 일은
  318. 5-6명의 팀이 7년쯤 걸리는 일을
  319. 한 사람이 15분 걸려서
  320. 하는 일로 대체합니다.
  321. 이 과정은 4 - 5 번 반복합니다.

  322. 보다시피 150만 장의 사진의
  323. 62%가 제대로
    분류된 것을 볼 수 있죠.
  324. 이 시점에서 우리는
  325. 전체를 빠르게 잡아서
  326. 실수가 없는지 확인합니다.
  327. 실수가 있으면 컴퓨터에게 알리죠.
  328. 각각의 다른 그룹에서 이런 과정을 통해
  329. 150만 장의 사진을 분류하는데
  330. 80%의 성공율을 보입니다.
  331. 이 시점에서는
  332. 바르게 분류되지 않은 적은 숫자를 찾아
  333. 이유를 알아내는 과정입니다.
  334. 그런 방식으로
  335. 15분 안에 우리는 97%의
    분류율을 얻습니다.
  336. 이런 기술은 우리가 중요한 문제를
    고칠 수 있게 하는데

  337. 그것은 세계에서 의료 전문가가
    부족하다는 사실입니다.
  338. 세계 경제 포럼은 개발도상국에서
  339. 10배에서 20배의 의사가
    부족하다고 말했는데
  340. 그 문제를 고치기 위해
  341. 충분한 인원을 교육시키려면
    300년이 걸립니다.
  342. 이런 심화 학습 방식을 사용해서
  343. 그들의 효율을 높일 수 있다고
    상상해보세요.
  344. 저는 그런 기회에 대해
    아주 흥분했습니다.

  345. 저는 그 문제도 걱정합니다.
  346. 여기서 문제는 이 지도에서
    파란색으로 표시된 곳은
  347. 서비스가 고용의
    80% 이상을 차지합니다.
  348. 무슨 서비스일까요?
  349. 이런 서비스입니다.
  350. 이것들은 컴퓨터가
    방금 배운 것과 똑같습니다.
  351. 개발된 세상에서 고용의 80%가
  352. 컴퓨터가 방금 배운 것입니다.
  353. 그게 뭘 뜻합니까?
  354. 글쎄, 괜찮을거에요.
    다른 일자리로 대체되겠죠.
  355. 예를 들면, 데이터 과학자한테
    더 많은 일이 있을 겁니다.
  356. 그렇지 않아요.
  357. 데이터 과학자가 이런 것을 만드는데
    오래 걸리지 않습니다.
  358. 예를 들어, 4가지 알고리즘이 모두
    한 사람이 만들었죠.
  359. 여러분이 이전에도 이런 일이
    벌어졌다고 생각한다면
  360. 과거에 새로운 것이 나타났을 때
    그 결과를 본 적이 있죠.
  361. 새로운 일자리로 대체되었고
  362. 새로운 일자리는 어떤 것일까요?
  363. 이것을 예측하기가 정말 어렵습니다.
  364. 왜냐하면 사람의 성과는
    이렇게 점진적인데
  365. 심화 학습 시스템은
  366. 능력이 기하급수적으로
    증가하는 것을 압니다.
  367. 우리는 여기에 있죠.
  368. 현재 우리는 주변을 보면서 말해요.
  369. "컴퓨터는 정말 바보야." 그렇지?
  370. 하지만 5년 안에
    컴퓨터는 이 도표밖으로 나갈 겁니다.
  371. 그래서 이 능력을 지금 당장
    생각해야 합니다.
  372. 물론 전에도 이걸 본 적이 있습니다.

  373. 산업 혁명에서
  374. 엔진 덕분에
    능력이 한 단계 달라졌죠.
  375. 하지만 시간이 좀 흐른 뒤
    오름세가 멈췄습니다.
  376. 사회적 분열이 있었지만
  377. 엔진을 사용해서
    모든 상황에서 동력을 만들어내자
  378. 모든게 안정되었죠.
  379. 기계 학습 혁명은
  380. 산업 혁명과는 아주 다릅니다.
  381. 기계 학습 혁명은 절대
    안정되지 않을 거니까요.
  382. 컴퓨터의 지능활동이 더 나을수록
  383. 더 나은 컴퓨터를 만들테고 그 컴퓨터는
    지적 능력이 더 뛰어나겠죠.
  384. 그래서 이것은 세계가 실제로
  385. 경험해본 적이 없는
    변화가 될 것입니다.
  386. 여러분이 이전에 가능하다고
    이해한 것들이 이제는 다릅니다.
  387. 이것은 이미 우리에게
    영향을 주고 있습니다.

  388. 지난 25년간
    자본 생산량은 증가했지만
  389. 노동 생산량은 변화가 없었고
    사실 조금 감소했습니다.
  390. 그래서 이런 토론을 지금부터
    시작하고 싶습니다.

  391. 제가 이런 상황을 사람들에게
    종종 얘기하면
  392. 사람들은 아주 무시합니다.
  393. 컴퓨터는 진짜 생각할 수 없어.
  394. 감정을 드러내지 못하고
    시도 이해를 못하지.
  395. 우리는 컴퓨터가 어떻게 작동하는지
    정말 이해할 수 없어.
  396. 그러니 어쩌라고?
  397. 컴퓨터는 지금
  398. 사람들이 돈받고 하는 일을
    할 수 있습니다.
  399. 그래서 이제는 우리가
  400. 이런 새로운 현실을 인식하도록
    사회적, 경제적 구조를 조정하는 법을
  401. 생각해봐야 할 때입니다.
  402. 감사합니다.
  403. (박수)