Return to Video

Törtek osztása

  • 0:01 - 0:03
    Üdvözöllek a törtek osztásának bemutatásában!
  • 0:03 - 0:04
    Kezdjük is el.
  • 0:04 - 0:07
    Mielőtt megadnám a rávezetést -- igaz
    ából lehet, hogy ezt
  • 0:07 - 0:09
    inkább egy másik modulban fogom megtenni -- csak megmutatom inkább
  • 0:09 - 0:12
    a tört osztásának mechanikáját.
  • 0:12 - 0:14
    És kiderül, hogy ez igazából nem sokkal
  • 0:14 - 0:16
    bonyolultabb a tört szorzásánál.
  • 0:16 - 0:21
    Ha azt kérdezném, 1/2 osztva 1/2-del, ha ezt
  • 0:21 - 0:25
    törttel osztjuk, vagy igazából bármilyen
  • 0:25 - 0:30
    számmal osztjuk, akkor ez ugyanaz lesz, mint ha ezt megszorozzuk a reciprokával.
  • 0:30 - 0:37
    Tehát, 1/2 osztva 1/2-del az egyenlő 1/2 szorozva 2/1-del.
  • 0:37 - 0:45
    Mi csak megfordítottuk -- fordított -- a második 1/2-et.
  • 0:45 - 0:48
    És a szorzás modul óta tudjuk, hogy 1/2
  • 0:48 - 0:51
    szorozva 2/1-del, hát, az 2/2-del egyenlő
  • 0:51 - 0:54
    vagy ez egyenlő 1-gyel.
  • 0:54 - 0:56
    És ez érthető is, mivel bármely szám önmagával osztva
  • 0:56 - 0:59
    1-gyel lesz egyenlő.
  • 0:59 - 1:03
    1/2 osztva 1/2-del az 1, csakúgy, mint az 5 osztva 5-tel az 1, csakúgy, mint
  • 1:03 - 1:05
    a 100 osztva 100-zal az 1.
  • 1:05 - 1:07
    És ez nem egy új dolog.
  • 1:07 - 1:09
    Igazából mindig is csináltuk ezt.
  • 1:16 - 1:21
    De ez nem ugyanaz, mint a 2 szorozva
  • 1:21 - 1:24
    a 2 fordítottjával, ami 1?
  • 1:24 - 1:25
    Megmutatom ezt.
  • 1:25 - 1:27
    Igazából hadd adjak még egy pár példát, hogy megmutassam,
  • 1:27 - 1:31
    hogy a törtek osztása nem egy új elképzelés, ez az egész
  • 1:31 - 1:35
    a reciprokkal való szorzás.
  • 1:35 - 1:41
    Ha azt kérdezném, mi a 12 osztva 4-gyel?
  • 1:41 - 1:43
    Hát, mi tudjuk a választ erre, de meg fogom mutatni,
  • 1:43 - 1:51
    hogy ez ugyanaz a dolog, mint a 12 szorozva 1/4-del.
  • 1:51 - 1:56
    12/1 szorozva 1/4-del, az 12/4, ami 3.
  • 1:56 - 1:59
    És a 12/4 igazából csak egy másik mód a 12 osztva 4 leírására,
  • 1:59 - 2:03
    tehát ez egy elég hosszú út, ami ugyanahhoz a ponthoz vezet.
  • 2:03 - 2:05
    De én csak meg akartam mutatni, hogy amit ebben a modulban csinálunk,
  • 2:05 - 2:08
    az semmi új, csak az, amit eddig is csináltunk,
  • 2:08 - 2:09
    amikor egy számmal osztottunk.
  • 2:09 - 2:11
    Az osztás ugyanaz a dolog.
  • 2:11 - 2:14
    Egy számmal való osztás az ugyanaz az, mintha szoroznánk ezt
  • 2:14 - 2:16
    a szám reciprokával.
  • 2:16 - 2:20
    És csak visszatekintésképpen, a reciprok, ha van egy számom,
  • 2:20 - 2:28
    A, a reciprok -- inv. (inverse=reciprok) inverse röviden -- 1/A.
  • 2:28 - 2:36
    Tehát a 2/3 reciproka a 3/2, vagy az 5 reciproka, mert az 5
  • 2:36 - 2:40
    az ugyanaz, mint az 5/1, tehát a reciprok 1/5.
  • 2:43 - 2:46
    Csináljunk meg néhány osztást törtekkel.
  • 2:46 - 2:49
    Mennyi a 2/3 osztva 5/6-dal?
  • 2:56 - 3:06
    Hát, tudjuk, hogy ez ugyanaz, mint a 2/3 szorozva 6/5-del,
  • 3:06 - 3:09
    és az egyenlő 12/15-del.
  • 3:09 - 3:15
    3-mal eloszthatjuk a számlálót és a nevezőt, az 4/5.
  • 3:15 - 3:23
    Mennyi a 7/8 osztva 1/4-del?
  • 3:23 - 3:31
    Ez ugyanaz, mint a 7/8 szorozva 4/1-del.
  • 3:31 - 3:33
    Emlékezzünk, csak megfordítottam ezt 1/4-et.
  • 3:33 - 3:37
    1/4-del osztva ez ugyanaz lesz, mintha szoroznánk 4/1-del.
  • 3:37 - 3:38
    Ennyit kell csak csinálnunk.
  • 3:38 - 3:40
    Aztán használhatunk egy kis rövidítést, amit megtanultunk
  • 3:40 - 3:41
    a szorzásról szóló modulban.
  • 3:41 - 3:43
    8 osztva 4-gyel az 2.
  • 3:43 - 3:45
    4 osztva 4-gyel az 1.
  • 3:45 - 3:47
    Ez 7/2-del lesz egyenlő.
  • 3:47 - 3:50
    Vgay ha ezt vegyes számként akarnánk írni, ez,
  • 3:50 - 3:51
    természetesen nagyobb lesz, mint egy egész.
  • 3:51 - 3:53
    A számlálója nagyobb, mint
  • 3:53 - 3:55
    a nevezője.
  • 3:55 - 3:59
    Ha vegyes számként akarnánk írni, 7-ben a 2 az
  • 3:59 - 4:04
    3-szor van meg, a maradék 1, tehát ez 3 és fél.
  • 4:04 - 4:04
    Mindkétféleképpen írhatjuk ezt.
  • 4:04 - 4:06
    Én szeretem ezt így írni, mert így
  • 4:06 - 4:08
    könnyebb dolgozni vele.
  • 4:08 - 4:10
    Nézzük egy csomó feladatot, vagy legalábbis annyit,
  • 4:10 - 4:14
    amennyit meg tudunk csinálni a következő 4-5 percben.
  • 4:14 - 4:24
    Mennyi a negatív 2/3 osztva 5/2-del?
  • 4:24 - 4:29
    Még egyszer, ez ugyanannyi, mint a mínusz 2/3 -- hoppá --
  • 4:29 - 4:35
    mint a mínusz 2/3 szorozva mennyivel?
  • 4:35 - 4:40
    Ez szorozva az 5/2 reciprokával, ami 2/5, és
  • 4:40 - 4:46
    az egyenlő 4/15-del.
  • 4:46 - 4:52
    Mennyi a 3/2 osztva 1/6-dal?
  • 4:52 - 5:00
    Hát, az ugyanaz, mint a 3/2 szorozva 6/1-del,
  • 5:10 - 5:11
    úgy gondolom, hogy értjük mostmár ezt.
  • 5:11 - 5:13
    Nézzük csak, csináljunk még egy párat.
  • 5:13 - 5:16
    És természetesen bármikor megállíthatjuk a videót, és ránézhetünk erre a
  • 5:16 - 5:19
    prezentációra újra, és újra összezavarodhatunk tőle.
  • 5:19 - 5:27
    Nézzük csak, csináljuk meg az 5/7 osztva 10/3-dalt.
  • 5:27 - 5:34
    Hát, ez ugyanaz, mint az 5/7 szorozva 3/10-del.
  • 5:34 - 5:35
    Csak megszoroztam a szám reciprokával.
  • 5:35 - 5:38
    Ez az amit újra és újra megcsinálok itt.
  • 5:38 - 5:40
    Mínusz 5 szorozva 3-mal.
  • 5:40 - 5:43
    Mínusz 15.
  • 5:43 - 5:47
    7-szer 10 az 70.
  • 5:47 - 5:50
    Ha a számlálót és a nevezőt elosztjuk az
  • 5:50 - 5:56
    5-tel, akkor 3/14-et kapunk.
  • 5:56 - 5:58
    Ezt meg is csinálhattuk volna itt is.
  • 5:58 - 6:00
    Megcsinálhattuk volna 5, 2, és akkor is
  • 6:00 - 6:03
    mínusz 3/14-et kaptunk volna.
  • 6:03 - 6:05
    Nézzünk még 1-2 példát.
  • 6:05 - 6:07
    Habár úgy gondolom, már értjük ezt.
  • 6:07 - 6:10
    Mondjuk azt, hogy 1/2 osztva mínusz 3-mal.
  • 6:14 - 6:15
    AH-HA!
  • 6:15 - 6:18
    Szóval mi történik, ha veszünk egy törtet és elosztjuk egy
  • 6:18 - 6:20
    egész számmal?
  • 6:20 - 6:23
    Hát, tudjuk, hogy bármilyen szám felírható törtként.
  • 6:23 - 6:29
    Ez ugyanaz a dolog, mint az 1/2 osztva mínusz 3/1-del.
  • 6:29 - 6:34
    És egy törttel való osztás az ugyanaz a dolog, mint szorzás
  • 6:34 - 6:37
    a reciprokával.
  • 6:37 - 6:42
    Tehát a mínusz 3/1 reciproka az mínusz 1/3. és ez
  • 6:42 - 6:45
    egyenlő negatív 1/6-tal.
  • 6:45 - 6:46
    Csináljuk meg a másik módszerrel.
  • 6:46 - 6:52
    Mi van, ha van nekem mínusz 3 osztva 1/2-del?
  • 6:52 - 6:52
    Ugyanaz a dolog.
  • 6:52 - 7:00
    Negatív 3 az ugyanaz, mint a mínusz 3/1 osztva 1/2-del, ami
  • 7:00 - 7:08
    ugyanaz a dolog, mint a mínusz 3/1 szorozva 2/1-del, ami egyenlő
  • 7:08 - 7:12
    mínusz 6/1-gyel, ami egyenlő mínusz 6-tal.
  • 7:12 - 7:16
    Most pedig hadd adjak egy kis rávezetést, hogy
  • 7:17 - 7:20
    miért is működik ez.
  • 7:20 - 7:24
    Mondjuk 2 osztva 1/3-dal.
  • 7:24 - 7:28
    Hát, tudjuk, hogy ez egyenlő 2/1 szorozva
  • 7:28 - 7:30
    3/1-del, ami 6-tal egyenlő.
  • 7:30 - 7:33
    Hogyan függ össze 2, 1/3 és a 6?
  • 7:33 - 7:34
    Nézzük ezt így.
  • 7:34 - 7:37
    Mintha lenne 2 szelet pizzám.
  • 7:37 - 7:39
    Van két szelet pizzám.
  • 7:39 - 7:42
    Itt van a két szelet pizzám.
  • 7:42 - 7:43
    Kettő pont itt.
  • 7:43 - 7:45
    Szóval van nekem két szelet pizzám és ezt el fogom osztani
  • 7:45 - 7:48
    harmadokra.
  • 7:48 - 7:51
    Minden egyes szeletet felharmadolom.
  • 7:51 - 7:53
    Le fogom rajzolni a kis Mercedes jelet.
  • 7:53 - 7:57
    Tehát elharmadolom a pizzaszeleteket, ugye?
  • 7:57 - 7:58
    Mennyi darabom van így?
  • 7:58 - 8:03
    Nézzük csak, 1, 2, 3, 4, 5, 6.
  • 8:03 - 8:05
    6 darabom van.
  • 8:05 - 8:08
    Lehet, hogy most kicsit el szeretnénk ezen töprengeni,
  • 8:08 - 8:13
    de szerintem érthető ez nekünk.
  • 8:13 - 8:17
    Még csináljunk meg egyet azért, hogy lefárasszuk az agyunkat.
  • 8:17 - 8:26
    Ha van nekünk 7/2 osztva 4/9-del -- válasszunk egy negatív
  • 8:26 - 8:31
    4/9-edet -- ez ugyanaz, mint a mínusz 7/2 szorozva
  • 8:31 - 8:34
    mínusz 9/4-del, ugye?
  • 8:34 - 8:38
    Csak megszoroztam ezt a negatív 4/9 reciprokával.
  • 8:38 - 8:41
    9 szorozva 7-tel az egyenlő -- negatív 7 szorozva negatív
  • 8:41 - 8:48
    9-cel, az pozitív 63, és 2 szorozva 4-gyel az 8.
  • 8:48 - 8:51
    Remélhetőleg mostmár tudjuk, hogyan kell osztani
  • 8:51 - 8:56
    törttel, és ki is próbálhatod a törttel való osztásról
  • 8:56 - 8:57
    szóló modulokat.
  • 8:57 - 8:59
    Jó szórakozást!
Title:
Törtek osztása
Description:

Törtek osztása

more » « less
Video Language:
English
Duration:
08:58

Hungarian subtitles

Revisions Compare revisions